Document Type
Research Article
Abstract
Genetic diversity among ten maize genotypes (seven inbred lines and three testers) was investigated using ten simple sequence repeats (SSRs). Primers (bnlg128, bnlg1839, Umc1117, bnlg1144, and bnlg1152) generated the highest number of bands (4 bands) for inbred lines while the primer bnlg128 showing the highest number of bands (3 bands) for testers. The primer bnlg128 shows the highest effective number of alleles (ne) for inbred lines and testers. Among the studied primer bnlg1839 in inbred lines and primer bnlg128 in testers showed the maximum polymorphism information content (PIC) and the greatest diversity. Using UPGMA cluster analysis, the seven inbred lines were grouped under three clusters, while grouped the testers under two clusters. Most of the inbred lines which were derived from the same source population were grouped in the same cluster based on the SSRs DNA markers, indicating high genetic differentiation among their source populations. Results showed that the SSRs were informative in detecting genetic differences among the maize inbred lines and testers, as exhibited by the high average of Shannon’s information index (I), Nei’s expected heterozygosity (Nei’s), and PIC. The results suggest that the studied genotypes are diverse and may be utilized for further breeding programs
Keywords
Genetic diversity, Maize genotype, PCR, Simple sequence repeats\
How to Cite This Article
Abdulazeez, Sebar D.; Kakarash, Sakar A.; and Ismael, Namam B.
(2021)
"Genetic Diversity Among Ten Maize Genotypes Using Simple Sequence Repeat DNA Markers,"
Polytechnic Journal: Vol. 11:
Iss.
1, Article 7.
DOI: https://doi.org/10.25156/ptj.v11n1y2021.pp32-37
References
Abdulhusseinal-Badeiry, N., A. H. Al-Saadi and T. K. Merza. 2014. Analysis of genetic diversity in maize (Zea mays L.) varieties using simple sequence repeat (SSR) markers. J. Univ. Babylon. 22: 1768-1779.
Aci, M. M., P. Revilla Temiño, A. Morsli, A. Djemel, N. Belalia, Y. Kadri, M. Khelifi-Saloui, B. Ordás López and L. Khelifi. 2013. Genetic diversity in Algerian maize (Zea mays L) landraces using SSR markers. Maydica. 58: 304-310.
Adeyemo, O., A. Menkir, G. Melaku and O. Omidiji. 2012. Genetic diversity assessment and relationship among tropicalyellow endosperm maize inbred lines using SSR markers. Maydica. 56(1): 1-7.
Ahloowalia, B. and N. Dhawan. 1963. Effect of genetic diversity in combining ability of inbred lines of maize. Indian J. Genet. 23: 158-162.
Ali, Q., A. Ali, M. Ahsan, I. A. Nasir, H. G. Abbas and M. A. Ashraf. 2014. Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Adv. Life Sci. 1: 242-253.
Arunachalam, V. 1981. Genetic distance in plant breeding. Indian J. Genet. Plant Breed. 41(2): 226-236.
Beyene, Y., A. M. Botha and A. A. Myburg. 2006. Genetic diversity among traditional Ethiopian highland maize accessions assessed by simple sequence repeat (SSR) markers. Genet. Resour. Crop Evol. 53: 1579-1588.
Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314.
Choukan, R., A. Hossainzadeh, M. R. Ghannadha, M. L. Warburton, A. R. Talei and S. A. Mohammadi. 2006. Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res. 95: 212-222.
Diwan, S., P. Gupta, S. Gandhi and J. Talati. 2015. Estimation of genetic diversity among sweet corn genotypes revealed by SSR markers. Indian J. Agric. Biochem. 28: 6-10.
Enoki, H., H. Sato and K. Koinuma. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104: 1270-1277.
Falconer, D. S. 1960. Introduction to Quantitative Genetics. Pearson Education, India.
Faostat, F. 2018. statistical Databases, Fisheries Data, 2001. Food and Agriculture Organization of the United Nations, Rome, Italy. Available from: http://www.fao.org.
Govindaraj, M., M. Vetriventhan and M. Srinivasan. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015: 431487.
Hallauer, A. R., M. J. Carena and J. D. M. Filho. 2010. Quantitative Genetics in Maize Breeding. Springer Science & Business Media, Germany. p383-423.
Ihsan, H., I. Khalil and N. Hidayat-Ur-Rahman. 2005. Genotypic variability for morphological and reproductive traits among exoticmaize hybrids. Sarhad J. Agric. 21(4): 599-602.
Kalia, R. K., M. K. Rai, S. Kalia, R. Singh and A. Dhawan. 2011. Microsatellite markers: An overview of the recent progress in plants. Euphytica. 177: 309-334.
Kashiani, P. 2012. Genetic Potential of Selected Sweet Corn Inbred Lines and Analysis of Their Combining Ability Assisted by Microsatellite DNA Markers. Universiti Putra Malaysia, Malaysia.
Kashiani, P., G. Saleh, J. M. Panandam, N. A. P. Abdullah and A. Selamat. 2012. Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica. 57: 154-163.
Keller, L. F. and D. M. Waller. 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17: 230-241.
Kumar, R., T. Chattopadhyay, M. S. Lajjavati and Smriti. 2016. Diversity analysis of maize inbred lines on the basis of morphological and simple sequence repeat markers. Ecol. Environ. Conserv. 22: S147-S153.
Kumari, A., S. Sinha, K. Rashmi, S. Mandal and S. Sahay. 2018. Genetic diversity analysis in maize (Zea mays L.) using SSR markers. J. Pharmacogn. Phytochem. 1: 1116-1120.
Liu, K. and S. V. Muse. 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics. 21: 2128- 2129.
Lopes, A. D., C. A. Scapim, M. D. F. Machado, C. A. Mangolin, T. A. Silva, L. B. Cantagali, F. F. Teixeira and F. Mora. 2015. Genetic diversity assessed by microsatellite markers in sweet corn cultivars. Sci. Agricola. 72: 513-519.
Lopes, A., C. Scapim, C. Mangolin and M. Machado. 2014. Genetic divergence among sweet corn lines estimated by microsatellite markers. Genet. Mol. Res. 13: 10415-10426.
Mian, M. and P. Bahl. 1989. Genetic divergence and hybrid performance in chickpea. Indian J. Genet. Plant Breed. 49: 119- 124.
Molin, D., C. Coelho, D. Máximo, F. Ferreira, J. Gardingo and R. Matiello. 2013. Genetic diversity in the germplasm of tropicalmaize landraces determined using molecular markers. Genet. Mol. Res. 12: 99-114.
Nikhou, F., A. Ebrahimi and M. Shiri. 2013. Genetic diversity assessment among maize hybrids with using SSR markers. Tech. J. Eng. Appl. Sci. 3: 3831-3834.
Nikolić, A., D. Ignjatović-Micić, D. Kovačević, Z. Čamdžija, M. Filipović and S. Mladenović-Drinić. 2015. Genetic diversity of maize inbred lines as inferred from SSR markers. Genetika. 47: 489- 498.
Nyaligwa, L., S. Hussein, B. Amelework and H. Ghebrehiwot. 2015. Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica. 60(3): 29-36.
Ozturk, M., K. R. Hakeem, M. Ashraf and M. S. A. Ahmad. 2019. Crop Production Technologies for Sustainable use and Conservation: Physiological and Molecular Advances. CRC Press, United States.
Pandey, S. and C. Gardner. 1992. Recurrent selection for population, variety, and hybrid improvement in tropical maize. Adv. Agron. 48: 1-87.
Saghai, M. M., R. Biyashev, G. Yang, Q. Zhang and R. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 91: 5466-5470.
Salami, H. A., K. C. Sika, W. Padonou, D. Aly, C. Yallou, A. Adjanohoun, S. Kotchoni and L. Baba-Moussa. 2016. Genetic diversity of maize accessions (Zea mays L.) cultivated from Benin using microsatellites markers. Am. J. Mol. Biol. 6: 12.
Semagn, K., C. Magorokosho, B. S. Vivek, D. Makumbi, Y. Beyene, S. Mugo, B. Prasanna and M. L. Warburton. 2012. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genomics. 13: 113.
Senior, M., J. Murphy, M. Goodmanj and C. Stuber. 1998. Utility of SSRs for determining genetic similarities an relationships in maize using an agarose gel system. Crop Sci. 38: 1088-1098.
Sharma, L., B. Prasanna and B. Ramesh. 2010. Phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the North East Himalayan region. Genetica. 138: 619-631.
Smith, J., E. Chin, H. Shu, O. Smith, S. Wall, M. Senior, S. Mitchell, S. Kresovich and J. Ziegle. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173.
Sserumaga, J. P., D. Makumbi, H. Ji, K. Njoroge, J. W. Muthomi, G. N. Chemining’wa, L. Si-Myung, G. Asea and H. Kim. 2014. Molecular characterization of tropical maize inbred lines using microsatellite DNA markers. Maydica. 59: 267-274.
Vasal, S., B. Dhillon, G. Srinivasan, S., Mclean, J., Crossa and S. Zhang. 1995. Effect of S3 recurrent selection in four tropical maize populations on their selfed and randomly mated generations. Crop Sci. 35: 697-702.
Yeh, F., R. Yang and T. Boyle. 1999. POPGENE Version 1.31: Microsoft Window-Based Freeware for Population Genetic Analysis, University of Alberta. Edmonton, AB, Canada.
Publication Date
6-30-2021
Follow us: