•  
  •  
 

Corresponding Author

Sevan H. Bakir

Authors ORCID

0000-0002-5529-9340

Document Type

Research Article

Abstract

Pseudomonas aeruginosa was a significant source of nosocomial infection with the presence of extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBL) genes in P. aeruginosa being progressively documented globally. The purpose of this investigation was to detection the occurrence of MBL and ESBL in P. aeruginosa isolates acquired from diverse clinical samples, as well as the prevalence of blaTEM genes producing ESBLs. A total of 227 samples were obtained from various clinical specimens (wound, urine, sputum, bronchial wash, and burn) at public hospitals in Erbil region. Microorganism was obtained, treated, and recognized using normal microbiological culture procedures, biochemical testing, DNA extraction, and polymerase chain reaction to identify the presence of the blaTEM gene. Out of 227 specimens, 40 isolates (17.6%) were positive for P. aeruginosa, while 32 (80.6%) were considered as ESBL positive and 72.5% were positive for MBL manufacture by P. aeruginosa and the results of ESBL genes detection clarify that most of ESBL and MBL producer isolates of P. aeruginosa carried blaTEM gene which found in more than half (52.5%) of the isolates strains. The current study demonstrates that the development of MBL and ESBL in P. aeruginosa is increased and making these infections more challenging to cure. For the decrease of death rates and the propagation of multidrug-resistant organisms by genes, early identification of MBL and ESBL synthesis is critical. As a result, a variety of measures must be used to control the spread of these diseases.

Keywords

blaTEM gene, Extended-spectrum β-lactamases, Metallo-β-lactamases, Pseudomonas aeruginosa

References

Aggarwal, R., U. Chaudhary and K. Bala. 2008. Detection of extended-spectrum β-lactamase in Pseudomonas aeruginosa. Indian J. Pathol. Microbiol. 51(2): 222-224.

Agnihotri, N., V. Gupta and R. M. Joshi. 2004. Aerobic bacterial isolates from burn wound infections and their antibiograms-a five-year study. Burns. 30: 241-243.

Alam, A., G. Sarvari, M. Motamedifar, H. Khoshkharam, M. Yousefi, R. Moniri, S. Senthamarai, S. Sivasankari. and M. S. Kumudhavathi. 2013. Susceptiblity pattern Of ESBL strains of P. aeruginosa in a tertiary care hospital, Kanchipuram, Tamilnadu. Int. J. Recent Sci. Res. 4: 1748-1750.

Al-Grawi, I. G. A. 2011. Expression of mexAB-OprM Operon of Septicemic Pseudomonas aeruginosa in Relation to Antibiotic Resistance. Ph.D. Thesis. Medical Microbiology department. College of Medicine. Al-Nahrain University.

Al-Hasso, M. Z. S. 2006. Extraction and Purification of Betalactamases from Some Gram Negative Bacilli Isolated from Lower Respiratory Tract Infections and Study of Some of their Characteristics. Ph.D Thesis. College of Science. University of Mosul.

Ali, F. A., B. M. Hussen and S. M. Zaki. 2020. Molecular detection of blactx-m gene among Pseudomonas aeruginosa strains isolated from different clinical samples in erbil city. Ann. Trop. Med. Public Health. 23(12):SP231231

Al-Kaabi, M. H. A. 2011. Detection of bla TEM, bla SHV, bla CTX-M-1 and bla CTX-M-ΙΙΙ Genes by using Polymerase Chain Reaction technique from some Gram negative bacteria.M.Sc.Thesis. College of Science. Al-Mustansiryah University.

Amutha, R., T. Padmakrishnan, Murugan and M. P. Renuga. 2009. Studies on multidrug resistant Pseudomonas aeruginosa from pediatric population with special reference to extended spectrum beta lactamase. Indian J. Sci. Technol. 2(11): 11-13.

Bashir, D., M. A. Thokar, B. A. Fomda, G. Bash, D. Zahoor, A. S. Ahmad and A. S. Toboli. 2011. Detection of metallobeta-lactamases (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afr. J. Microbiol. Res. 5: 164-172.

Bunyan, I. A., O. M. Hadi and H. A. K. Al-Mansoori. 2018. Molecular detection of Metallo-beta lactamase producing Pseudomonas aeruginosa isolated from different sites of infection. J. Pharm. Sci. Res. 10(5): 1072-1078.

Clinical and Laboratory Standards Institute. 2011. Performance standard for antimicrobial susceptibility testing, Twenty-First Informational Supplement. Vol. 31. Clinical and Laboratory Standards Institute. pM100-S21.

Dhillon, R. H. and J. Clark. 2012. ESBLs: A clear and present danger? Crit. Care Res. Pract. 2012;2012:625170.

Drenkard, E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microb. Infect. 5: 1213-1219.

Eftekhar, F., M. Rastegar, M. Golalipoor, N. M. Samaei. 2012. Detection of extended spectrum beta-lactamases in urinary isolates of Klebsiella pneumoniae in relation to BlaSHV, BlaTEM and BlaCTX-M gene carriage. Iran. J. Public Health. 41(3): 127-132.

Eigner, U., A. Schmid, U. Wild, D. Bertsch and A. M. Fahr. 2005. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J. Clin. Microbiol. 43: 3829-3834.

Goel, V., S. A. Hogade and S. G. Karadesai. 2013. Prevalence of extended-spectrum beta- lactamases, AmpC beta-lactamase, and metallo-beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii in an intensive care unit in a tertiary care hospital. J. Sci. Soc. 40: 28-31.

Goyal, A., K. N. Prasad, A. Prasad, S. Gupta, U. Ghoshal and A. Ayyagari. 2009. Extended spectrum b-lactamases in Escherichia coli and Klebsiella pneumoniae and associated risk factors. Indian J. Med. Res. 129: 695-700.

Hadadi, A., M. Rasoulinejad, Z. Maleki, M. Yonesian, A. Shirani and Z. Kourorian. 2008. Antimicrobial resistance pattern of Gramnegative bacilli of nosocomial origin at 2 university hospitals in Iran. Diagn. Microbiol. Infect. Dis. 60: 301-305.

Hancock, D. P. 2000. SpeertAntibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updat. 3: 247-255.

Harada, S., Y. Ishii and K. Yamaguchi. 2008. Extended-spectrum b-lactamases: Implications for the clinical laboratory andtherapy. Korean J. Lab Med. 2: 401-412.

Haran, O. H. 2012. Detection of β-lactam Resistance Genes Isolated from Some Clinical Infections Msc. Thesis. College of Science. University of Al-Qadisiya.

Ilyas, M., M. Khurram, S. Ahmad and I. Ahmad. 2015. Frequency, susceptibilityand co-existence of MBL, ESBL and AmpC positive Pseudomonas aeruginosain tertiary care hospitals of peshawar, KPK, Pakistan. J. Pure Appl. Microbiol. 9(2): 981-988.

Izquierdo-Cubas, F., A. Zambrano, I. Frómeta, A. Gutiérrez, M. Bastanzuri, H. Guanche And D. Rodríguez. 2008. National prevalence of nosocomial infections. Cuba 2004. J. Hosp. Infect. 68: 234-240.

Jaykumar, S. and B. Appalraju. 2007. The prevalence of multi and pan drug resistant Psuedomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital. Indian J. Pathol. Microbiol. 50(4): 922-925.

Lee, K., Y. S. Lim, D. Yong, J. H. Yum and Y. Chong. 2003. Evaluation of the hodge test and the imipenem-EDTA double- disk synergy test for differentiating metallo-β-lactamase- producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41: 4623-4629.

Li, J., R. L. Nation and J. D. 2006. Turnidge. Colistin: The re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis. 6(9): 589-601.

Lister, P. D., D. J. Wolter and N. D. Hanson. 2009. Antibacterialresistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22(4): 582-610.

Manoharan, A., K. Premalatha, S. Chatterjee and D. Mathai. 2011. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian J. Med. 29(2): 161-164.

Mansouri, M. and R. Ramazanzadeh. 2009. Spread of extendedspectrum beta-lactamase producing Esherichia coli clinical isolates in Sanandaj hospitals. J. Biol. Sci. 9: 362-366.

Marra, A. R., C. A. Pereira, A. C. Gales, L. C. Menezes, R. G. Cal, J. M. de Souza. 2006. Blood stream infections with metallo-ß-Lactamase producing Pseudomonas aeruginosa: Epidemiology, Microbiology and clinical outcomes. Antimicrob. Agents Chemother. 50: 388-390.

Mirsalehian, A., D. Kalantar-Neyestanaki, M. Taherikalani, F. Jabalameli and M. Emaneini. 2017. Determination of carbapenem resistance mechanismin clinical isolates of Pseudomonas aeruginosa isolated from burnpatients, in Tehran, Iran. J. Epidemiol. Glob. Health. 7(3): 155-159.

Nithyalakshmi, J., R. Vidhyarani, K. Mohanakrishnan and G. Sumathi G. 2016. ESBL producing Pseudomonas aeruginosa in clinical specimens: Is it a scary nightmare or paper tiger? Indian Microbiol. Res. 3(3): 287-291.

Obritsch, M. D., D. N. Fish, R. MacLaren and R. Jung. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48(12):4606-10.

Pagani, L., E. Dell’Amico, R. Migliavacca, M. M. D’Andrea, E. Giacobone, G. Amicosante, E. Romero and G. M. Rossolini. 2003. Multiple CTX-M-type extended spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in Northern Italy. J. Clin. Microbiol. 41(9): 4264-4269.

Peymani, A., T. Naserpour-Farivar, E. Zare and K. H. Azarhoosh. 2017. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J. Prev. Med. Hyg. 58(2): E155-E160.

Pollack, M. 2000. Pseudomonas aeruginosa. In: Mandell, G. L., J. E. Bennett and R. Dolin, editors. Principles and Practice of Infectious Diseases. 5th ed. Churchill Livingstone, Philadelphia, PA. p2310-2335.

Pramodhini, S. and K. S. Umadevi. 2015. Seetha prevalence of antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Puducherry, India. Int. J. Curr. Microbiol. Appl. Sci. 12: 718-726.

Saeidi, S., R. Alavi-Naini and S. Shayan. 2014. Antimicrobial susceptibility and distribution of TEM and CTX-M genes among ESBL-producing Klebsiella pneumoniae and Pseudomonas aeruginosa causing urinary tract infections. Zahedan J. Res. Med. Sci. 16(4): 1-5.

Santanirand, P., K. Malathum, T. Chadlane and W. Laolerd. 2011. Distribution of carbapenem resistant Acinetobacter baumannii and Pseudomonas aeruginosa and ESBL-producing organisms colonization among intensive care patients. BMC Proc. 5: 293-293.

Shaikh, S., J. Fatima, S. Shakil, S. M. D. Rizvi and M. A. Kamal. 2015. Antibiotic resistance and extended spectrum betalactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 22(1): 90-101.

Senthamarai, S., S. Sivasankari and M. S. Kumudhavathi. 2013. Susceptiblity pattern of ESBL strains of P. aeruginosa in a Tertiary Care Hospital, Kanchipuram, Tamilnadu. Int. J. Recent Sci. Res. 4: 1748-1750 .

Toupkanlou, S. P., S. N. Peerayeh and R. P. Mahabadi. 2015. Class A and D extended-spectrum β-lactamases in imipenem resistant Pseudomonas aeruginosa isolated from burn patients in Iran. Jundishapur J. Microbiol. 8(8): e18352.

Ullah, F., S. A. Malik and J. Ahmed. 2009. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 35(7): 1020-1025.

Upadhyay, S., M. R. Sen and A. Bhattacharjee. 2010. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J. Infect. Dev. Ctries. 4(4): 239-242.

Varaiya, A., N. Kulkarni, M. Kulkarni, P. Bhalekar and J. Dogra. 2008. The incidence of metallo beta lactamase producing Pseudomonas aeruginosa among ICU patients. Indian J. Med. Res. 127(4): 398-402.

Zhang, R., Y. Jin and C. Han. 2002. The isolation of P. aeruginosa from burn, woundand the analysis of its antibiotic resistant spectrum. Zhonghua Shao Shang Za Zhi. 18(5): 285-287.

Publication Date

12-30-2021

Included in

Life Sciences Commons

Share

COinS