Document Type
Research Article
Abstract
Many problems associated with the engineering technology field can be transformed into Fredholm integral equations of the first kind to achieve problem-solving strategies. In this paper, the iterative kernel technique was reformulated to treat the numerical solution for the system of Fredholm integral equations of the first kind for the degenerate kernel. Three new theorems have been proposed and proved. This technique was programmed via Matlab and achieved a good result
Keywords
Iterative kernel technique, the system of integral equations, degenerate kernel, Fredholm
How to Cite This Article
Hassan, Talhat I.
(2019)
"Iterative Kernel Technique to Solve System Fredholm Integral Equation First Kind for Degenerate Kernel,"
Polytechnic Journal: Vol. 12:
Iss.
1, Article 1.
DOI: https://doi.org/10.25156/ptj.v12n1y2022.pp1-7
References
Abdou M. A. 2002. Fredholm -Volterra integral equation of first kind and contact problem. J. applied mathematics and computation. 125(8): 177-193.
Burova, I. G. and Ryabov, V. M. 2020. On the Solution of Fredholm Integral Equations of the First Kind, J. Wseas transactions on mathematics, (19): 699-708.
Edalatpanah, S. A. and Abdulmaleki, E. 2014. Chebyshev SemiIterative Method to Solve Fully Fuzzy linear Systems, J. Information and Computing Science. 9(1): 67-74.
Hasan, T. I. Sulaiman N. A. and Salleh S. 2016. Aitken method on iterative kernel method for solving system of VolterraFredholm integral equations of the second kind. J. Pure and Applied Sciences (ZJPAS), 28 (s6); s79-s88.
Hassan, T.I. 2019. An Approximate Solutions of two Dimension Linear Mixed Volterra- Fredholm Integral Equation of the Second Kind via Iterative Kernel Method. J. of Riparian university, 6(2): 101 -110.
Ibrahim, H. Attah, F. and Gyegwe, T. 2016. On the solution of Volterra-Fredholm and mixed Volterra-Fredholm integral equations using the new iterative method. J. applied Mathematics, 6(1): 1-5.
Jose M. G. and Miguel A. H. 2021. A Picard-Type Iterative Scheme for Fredholm Integral Equations of the Second Kind. J. Mathematics, 9(83): 1-15. Long G. and Nelakanti G. 2007. Iteration methods for Fredholm integral equations of the second kind. J. computers and Mathematics with applications, 53(6): 886-894.
Mahmud, M. H. 2008. Approximation methods for solving system of linear two dimensional Fredholm integral equations of a second kind. MSc thesis Salahaddin University.
Maxime, B. A., An introduction to the study of integral equations ", Heffner publishing Com. New York 1971.
Sahu, P. K. and Saha Ray, S. 2014. Numerical solutions for the system of Fredholm integral equations of the second kind by a new approach involving semi orthogonal B-spline wavelet collocation method, Science Direct. Applied mathematics and Computation, 234(15):368-379.
Sulaiman, N.A. and Hassan, T.I. 2008. Successive approximation method for solving integral equation of the first kind with symmetric kernel, J. of Education and sciences. 21(4):149-159. Talaat, I. H. 2019. Cooperating Newton’s Method with Series Solution Method for System of Linear Mixed Volterra-Fredholm Integral Equation of the Second Kind. J. of Cihan University-Erbil (CUESJ), 3(1):27-33.
Wazwaz, A.M., Linear and non-linear integral equations methods and applications, Springer-Verlag Berlin Heidelberg 2011
Publication Date
12-1-2019
Follow us: