Document Type
Original Article
Abstract
The distribution of petrophysical parameters is governed by lithology, hence understanding the spatial variation in lithology is essential for reservoir characterisation. This study points out the use of well logs to estimate the lithology of carbonate rocks (limestone, marly limestone, dolomite, and dolomitic limestone) found in Upper Cretaceous to Miocene formations at the Khabbaz Oil Field in Northern Iraq. Applying the multivariate regression technique to neutron, and density data enabled accurate lithology prediction. By using independent values (well log data) to predict a dependent value (lithology), this technique is a progression of regression analysis. The formations under study comprised a large amount of marly limestone, dolomite, and dolomitic limestone, according to the well log data results. It is possible to calculate the shale content using gamma-ray logs. R2 = 0.72 showed a statistically significant association between the described and anticipated lithologies. For subsequent prediction for other formations in the same well, the model with a higher coefficient of determination (0.72) might be evaluated. In the absence of cores, this work is helpful for lithological and petrophysical characterization of carbonate reservoirs and facies analysis.
Keywords
Multivariate regression, Carbonate lithology, Gamma-ray log, Density log, Neutron log
How to Cite This Article
Hussein, Hussein S.
(2023)
"Electrofacies analysis using a geostatistical approach, Northern Iraq case study,"
Polytechnic Journal: Vol. 13:
Iss.
2, Article 8.
DOI: https://doi.org/10.59341/2707-7799.1723
References
[1] Abdel-Fattah MI, Mahdi AQ, Theyab MA, Pigott JD, AbdAllah ZM, Radwan AE. Lithofacies classification and sequence stratigraphic description as a guide for the prediction and distribution of carbonate reservoir quality: a case study of the Upper Cretaceous Khasib Formation (East Baghdad oilfield, central Iraq). J Petrol Sci Eng 2022;209: 109835. https://doi.org/10.1016/j.petrol.2021.109835.
[2] Abdelmaksoud A, Radwan AA. Integrating 3D seismic interpretation, well log analysis and static modelling for characterizing the Late Miocene reservoir, Ngatoro area, New Zealand. Geomech Geophys Geo-Energy Geo-Resour 2022;8(2):63. https://doi.org/10.1007/s40948-022-00364-8.
[3] Abdullah EA, Abdelmaksoud A, Hassan MA. Application of 3D static modelling in reservoir characterization: a case study from the qishn formation in sharyoof oil field, masila basin, Yemen. Acta Geol Sin-Engl Ed 2022;96(1):348e68. https://doi.org/10.1111/1755-6724.14766.
[4] Al-Dujaili AN, Shabani M, Al-Jawad MS. Characterization of flow units, rock and pore types for Mishrif Reservoir in West Qurna oilfield, Southern Iraq by using lithofacies data. J Pet Explor Prod Technol 2021;11:4005e18. https://doi.org/10. 1007/s13202-021-01298-9.
[6] Asquith GB, Gibson CR. Basic well analysis for geologist. AAPG Publication; 1982. p. 1e212. https://doi.org/10.1306/ Mth3425.
[7] Asquith GB, Krygowski D, Gibson CR. Basic well log analysisvol. 16. Tulsa: American Association of Petroleum Geologists; 2004. https://archives.datapages.com/data/ specpubs/method16/me16ch00/me16ch00.htm.
[8] Baban D, Hussein HS. Characterization of the tertiary reservoir in Khabbaz oil field, Kirkuk area, northern Iraq. Arabian J Geosci 2016;9:1e19. https://doi.org/10.1007/s12517- 015-2272-y.
[9] Baldwin JL, Otte DN, Whealtley CL. Computer emulation of human mental processes: application of neural network simulators to problems in well log interpretation. In: SPE annual technical conference and exhibition? SPE; 1989, October. SPE-19619. https://doi.org/10.2118/19619-MS.
[10] Buday T, Jasim Z. The regional geology of Iraq. VII. Iraq: Dar Al-Kutib Publishing House, University ofMosul; 1986. p. 352p. https://books.google.cz/books/about/The_Regional_ Geology_of_Iraq.html?id¼leDUQQAACAAJ&redir_esc¼y.
[11] Chang HC, Kopaska-Merkel DC, Chen HC. Identification of lithofacies using Kohonen self-organizing maps. Comput Geosci 2002;28(2):223e9. https://doi.org/10.1016/S0098- 3004(01)00067-X.
[12] Chang HC, Kopaska-Merkel DC, Chen HC, Durrans SR. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system. Comput Geosci 2000;26(5):591e601. https://doi.org/10.1016/ S0098-3004(00)00010-8.
[13] Zhang Chong, Zhang Zhansong, Chen Yulong. Logging lithology identification of tight sandy conglomerate and its application. Technol Rev 2014;32(25):59e62. https://doi.org/ 10.1016/j.petrol.2019.106336.
[14] Cracknell MJ, Reading AM. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatialinformation. Comput Geosci 2014;63:22e33. https://doi.org/ 10.1016/j.cageo.2013.10.008.
[15] Doveton JH. Applications of artificial intelligence in log analysis: [Chapter 7]. 1994. https://doi.org/10.1306/CA2 580C7.
[16] Elkatatny S, Mahmoud M. Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique. Petroleum 2018;4(2): 178e86. https://doi.org/10.1016/j.petlm.2017.09.009.
[17] Guiwen Wang, Zhongchun Sun, Jianwei Fu, Xingping Luo, Xianling Zhao, Tuo Pan. Control factors and logging evaluation method for glutenite reservoir in Mabei area, Junggar Basin. Xinjing Pet Geol 2015;36(1):1. https://www.zgxjpg. com/EN/10.7657/XJPG20150102.
[18] Harris JR, Grunsky EC. Predictive lithological mapping of Canada's North using Random Forest classification applied to geophysical and geochemical data. Comput Geosci 2015; 80:9e25. https://doi.org/10.1016/j.cageo.2015.03.013.
[19] Hussein HS. Carbonate fractures from conventional well log data, Kometan Formation, Northern Iraq case study. J Appl Geophys 2022;206:104810. https://doi.org/10.1016/j.jappgeo. 2022.104810.
[20] Imamverdiyev Y, Sukhostat L. Lithological facies classification using deep convolutional neural network. J Petrol Sci Eng 2019;174:216e28. https://doi.org/10.1016/j.petrol.2018.11. 023.
[21] Killeen PG. Borehole geophysics: exploring the third dimension. Proc Explor. 1997;97:31e42. https://www. 911metallurgist.com/blog/wp-content/uploads/2015/10/ Borehole-Geophysics-Exploring-The-Third-Dimension.pdf.
[22] Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43(1):59e69. https://link. springer.com/article/10.1007/BF00337288.
[23] Li Y, Anderson-Sprecher R. Facies identification from well logs: a comparison of discriminant analysis and naïve Bayes classifier. J Petrol Sci Eng 2006;53(3e4):149e57. https://doi. org/10.1016/j.petrol.2006.06.001.
[24] Liu B, Wang H, Fu X, Bai Y, Bai L, Jia M, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull 2019;103(2):405e32. https://doi. org/10.1306/08031817416.
[25] Liu G, Liu B, Huang Z, Chen Z, Jiang Z, Guo X, et al. Hydrocarbon distribution pattern and logging identification in lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation from the Santanghu basin. Fuel 2018; 222:207e31. https://doi.org/10.1016/j.fuel.2018.02.123.
[26] Mahmood W, Mohammed A, HamaHussein S. Predicting mechanical properties and ultimate shear strength of gypsum, limestone and sandstone rocks using Vipulanandan models. Geomech Geoeng 2020;15(2):90e106. https://doi.org/ 10.1080/17486025.2019.1632494.
[27] Mahmoodi O, Smith RS, Tinkham DK. Supervised classification of down-hole physical properties measurements using neural network to predict the lithology. J Appl Geophys 2016; 124:17e26. https://doi.org/10.1016/j.jappgeo.2015.11.006.
[28] McDowell GM, King A, Lewis RE, Clayton EA, Grau JA. Insite nickel assay by prompt gamma neutron activation wireline logging. In: SEG technical program expanded abstracts 1998. Society of Exploration Geophysicists; 1998. p. 772e5. https://doi.org/10.1190/1.1820589.
[29] Mohaghegh S, Balan B, Ameri S. Permeability determination from well log data. SPE Form Eval 1997;12(3):170e4. https:// doi.org/10.2118/30978-PA.
[30] Mohammed AS. Vipulanandan models to predict the mechanical properties, fracture toughness, pulse velocity and ultimate shear strength of shale rocks. Geotech Geol Eng 2019;37(2):625e38. https://doi.org/10.1007/s10706-018-0633-5.
[31] Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. John Wiley & Sons; 2021. https://ocd.lcwu.edu.pk/cfiles/Statistics/Stat-503/IntroductiontoLinear RegressionAnalysisbyDouglasC.MontgomeryElizabethA. PeckG.GeoffreyViningz-lib.org.pdf.
[32] Ning Zhao, Liang Wang, Yong Tang, Jianhua Qu, Xingping Luo, Liqiang Sima. Logging identification method for lithology: a case study of baikouquan formation in wellblock fengnan, junggar basin. Xinjing Pet Geol 2016;37(6):1. https://www.zgxjpg.com/EN/10.7657/XJPG20160618.
[33] Nouri-Taleghani M, Kadkhodaie-llkhchi A, KarimiKhaledi M. Determining hydraulic flow units using a hybrid neural network and multi-resolution graph-based clustering method: case study from south pars gasfield, Iran. J Petrol Geol 2015;38(2):177e91. https://doi.org/10.1111/jpg.12605.
[34] Pabakhsh M, Ahmadi K, Riahi MA, Shahri AA. Prediction of PEF and LITH logs using MRGC approach. Life Sci J 2012; 9(4):974e82. http://www.lifesciencesite.com/lsj/life0904/150_ 10688life0904_974_982.pdf.
[35] Rider M. The geological interpretation of well logs. 2nd ed. Aberdeen, and Sutherland: Rider French Consulting Ltd.; 2002. p. 280. https://www.amazon.com/GeologicalInterpretation-Well-Logs-Rider/dp/0954190688.
[36] Ripley BD. Pattern recognition and neural networks. Cambridge University Press; 2007. https://doi.org/10.1017/ CBO9780511812651.
[37] Rogers SJ, Fang JH, Karr CL, Stanley DA. Determination of lithology from well logs using a neural network. AAPG Bull 1992;76(5):731e9. https://doi.org/10.1306/BDFF88BC-1718- 11D7-8645000102C1865D.
[38] Sfidari E, Kadkhodaie-Ilkhchi A, Rahimpour-Bbonab H, Soltani B. A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the South Pars gas field, the Persian Gulf basin. J Petrol Sci Eng 2014;121:87e102. https://doi.org/10.1016/j.petrol.2014.06. 013.
[39] Sun Z, Lin C, Zhu P, Chen J. Analysis and modeling of fluvial-reservoir petrophysical heterogeneity based on sealed coring wells and their test data, Guantao Formation, Shengli oilfield. J Petrol Sci Eng 2018;162:785e800. https:// doi.org/10.1016/j.petrol.2017.11.006.
[40] Tian Y, Xu H, Zhang XY, Wang HJ, Guo TC, Zhang LJ, et al. Multi-resolution graph-based clustering analysis for lithofacies identification from well log data: case study of intraplatform bank gas fields, Amu Darya Basin. Appl Geophys 2016;13:598e607. https://link.springer.com/article/10. 1007/s11770-016-0588-3.
[41] Vipulanandan C, Mohammed A. Hydraulic Fracturing fluid modified with nanosilica proppant and salt water for shale rocks. Houston, TX, USA: American Association of Drilling Engineers; 2015. https://www.aade.org/application/files/ 7515/7261/1266/AADE-15-NTCE-38.pdf.
[43] Wang X, Hou J, Song S, Wang D, Gong L, Ma K, et al. Combining pressure-controlled porosimetry and rate controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs. J Petrol Sci Eng 2018;171:353e61. https://doi.org/10.1016/j.petrol.2018.07.050.
[44] Weisberg S. Applied linear regressionvol. 528. John Wiley & Sons; 2005. https://books.google.iq/books?hl¼en&lr¼&id¼xd 0tNdFOOjcC&oi¼fnd&pg¼PR7&dq¼Weisberg+S.+Applied+ linear+regression+vol.+528.+John+Wiley+%26+Sons%3B+ 2005.&ots¼dW0nAtFDHM&sig¼TS-7HjfIH4uLaiZehb9wqdQgRI&redir_esc¼y#v¼onepage&q&f¼false.
[45] Wu PY, Jain V, Kulkarni MS, Abubakar A. Machine learning based method for automated well-log processing and interpretation. In: SEG international exposition and annual meeting. SEG; 2018, October. SEG-2018. https://doi.org/10. 1190/segam2018-2996973.1.
[46] Zhang J, Liu S, Li J, Liu L, Liu H, Sun Z. Identification of sedimentary facies with well logs: an indirect approach with multinomial logistic regression and artificial neural network. Arabian J Geosci 2017;10:1e9. https://link.springer.com/ article/10.1007/s12517-017-3045-6.
Follow us: