•  
  •  
 

Corresponding Author

Sardar Qader Othman

Authors ORCID

https://orcid.org/0000-0001-5445-9501

Document Type

Original Article

Abstract

Radon gas can cause lung harm, leading to extensive research on the biological effects of radon exposure in human lungs under various environmental conditions. The study estimates radon progeny doses for workers in Erbil city's building materials industries, focusing on alpha particle energy deposition, particle clearance, and lung deposition. Using a home condition of 1 Bq.m-3, radon progeny particle-absorbed doses in the trachea, bronchi, bronchioles, alveolar-interstitial sections, and lungs were determined in the first scenario. The 1 Bq.m-3 is replaced with the radon level for each factory to prepare its atmosphere in the second scenario. For the first scenario, the absorbed dose was discovered to be 8.02 in the trachea and bronchi (BB) section, 9.20 in the bronchioles (bb) area, 0.114 in the alveolar-interstitial (AI) section, and 5.78 mGy.WLM-1 in the whole lung. While, for the typical environment of various factories (second scenario), the doses of all regions (BB region, bb region, AI region, and whole lung) ranged from 214.29, 245.82, 3.04, and 154.38 mGy.WLM-1 for workers at the gypsum factory to 1425.39, 1635.11, 20.26, and 1062.92 mGy.WLM-1, respectively, for workers at the red brick 1 factory. In accordance with the scientific literature, the dosimetry method yields a dose conversion factor (DCF) of 13.87 mSv WLM-1 for lung in the first scenario. Advanced dosimetry analysis of breathed radon progeny can reveal structural, biological, and ecological factors affecting absorbed doses and enhance defense against irradiation, especially in high-radon regions.

Keywords

lung dosimetry, radon progeny, absorbed dose, radon concentration

References

[1] Darby S, Hill D, Auvinen A, Barros-Dios J, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br Med J 2005;330(7485):223. https://doi. org/10.1136/bmj.38308.477650.63.

[2] Monchaux G, Morlier J, Altmeyer S, Debroche M, Morin M. Influence of exposure rate on lung cancer induction in rats exposed to radon progeny. Radiat Res 1999;152(6s):S137e40. https://doi.org/10.2307/3580132.

[3] Monchaux G, Morlier J, Morin M, Chameaud J, Lafuma J, Masse R. Carcinogenic and cocarcinogenic effects of radon and radon daughters in rats. Environ Health Perspect 1994; 102(1):64e73. https://doi.org/10.1289/ehp.9410264.

[4] UNSCEAR. Effects of ionizing radiation: report to the general assembly with scientific annexes, united nations scientific committee on effects of atomic radiation. New York: United Nations Publications; 2008.

[5] Fakir H, Hofmann W, Caswell RS. Radon progeny microdosimetry in human and rat bronchial airways: the effect of crossfire from the alveolar region. Radiat Protect Dosim 2008; 130(2):149e61. https://doi.org/10.1093/rpd/ncm496.

[6] Hofmann W. Modelling inhaled particle deposition in the human lungda review. J Aerosol Sci 2011;42(10):693e724. https://doi.org/10.1016/j.jaerosci.2011.05.007.

[7] Hofmann W, Winkler-Heil R. Radon lung dosimetry models. Radiat Protect Dosim 2011;145(2e3):206e12. https://doi.org/ 10.1093/rpd/ncr059.

[8] Harley NH, Cohen BS, Robbins ES. The variability in radon decay product bronchial dose. Environ Int 1996;22:959e64. https://doi.org/10.1016/S0160-4120(96)00208-5.

[9] Hammood H, Al-Khalifa I. Radon concentration measurement in water of DhieQar Governorate (in Iraq) using emanometer. J Basrah Researches ((Sciences)) 2011;37(5). ISSN˰˰1817˰˰2695.

[10] Oufni L, Manaut N, Taj S, Manaut B. Determination of radon and thoron concentrations in different parts of some plants used in traditional medicine using nuclear track detectors. Am J Environ Protect 2013;1(2):34e40. https://doi.org/10. 12691/env-1-2-4.

[11] Nain M, Chauhan R, Chakarvarti S. Alpha radioactivity in Indian cement samples. Radiat Res 2006;3(4):171e6.

[12] Sakoda A, Ishimori Y, Yamaoka K, Kataoka T, Mitsunobu F. Absorbed doses of lungs from radon retained in airway lumens of mice and rats. Radiat Environ Biophys 2013;52: 389e95. https://doi.org/10.1007/s00411-013-0478-5.

[13] UNSCEAR. Sources and Effects of ionizing radiation. United nations scientific committee on effects of atomic radiation. Exposures from natural radiation sources. New York, USA: Annex B. United Nations Publication; 2000.

[14] Farkas A, Bal ashazy I. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies. Radiat Protect Dosim 2015;164(3):278e90. https://doi.org/10.1093/rpd/ncu269.

[15] ICRP. ICRP publication 60: 1990 recommendations of the international commission on radiological protection. Pergamon Ann ICRP 1992;21(1e3):1991.

[16] ICRP. International commission on radiological protection. The 2007 recommendations of the international commission on radiological protection. ICRP Publication Ann ICRP 2007; 103:2e4.

[17] ICRP. Publication 65: Protection against Radon-222 at home and work. Pergamon Press; 1993.

[18] ICRP., I. nternational Commission on Radiological Protection. Lung cancer risk from radon and progeny and statement on radon: Elsevier. 2010.

[19] Raaschou-Nielsen O, Andersen CE, Andersen HP, Gravesen P, Lind M, Schüz J, et al. Domestic radon and childhood cancer in Denmark. Epidemiology 2008:536e43. https://doi.org/10.1097/01.ede.0000288431.93533.7f.

[20] Henshaw DL, Eatough JP, Richardson RB. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet 1990;335(8696):1008e12. https://doi.org/10. 1016/0140-6736(90)91071-H.

[21] Ishimori Y, Mitsunobu F, Yamaoka K, Tanaka H, Kataoka T, Sakoda A. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals. Radiat Protect Dosim 2011;146(1e3):31e3. https://doi.org/10. 1093/rpd/ncr100.

[22] Othman SQ, Ahmed AH, Mohammed SI. Environmental health risks of radon exposure inside selected building factories in Erbil city, Iraq. Int J Environ Anal Chem 2022:1e15. https://doi.org/10.1080/03067319.2022.2107923.

[23] Schum M, Yeh H-C. Theoretical evaluation of aerosol deposition in anatomical models of mammalian lung airways. Bull Math Biol 1980;42:1e15. https://doi.org/10.1007/ BF02462363.

[24] Sakoda A, Ishimori Y, Fukao K, Yamaoka K, Kataoka T, Mitsunobu F. Lung dosimetry of inhaled radon progeny in mice. Radiat Environ Biophys 2012;51:425e42. https://doi. org/10.1007/s00411-012-0431-z.

[25] ICRP. Human respiratory tract model for radiological protectionvol. 66. Pergamon, Oxford: ICRP Publication; 1994.

[26] Yeh H, Schum G, Duggan M. Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat Rec 1979;195(3):483e92. https://doi.org/10.1002/ar.1091950308.

[27] Oldham MJ, Robinson RJ. Predicted tracheobronchial and pulmonary deposition in a murine asthma model. Anat Rec: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology 2007;290(10):1309e14. https://doi.org/10.1002/ar.20593.

[28] Zhu H, Li J, Qiu R, Pan Y, Wu Z, Li C, et al. Establishment of detailed respiratory tract model and Monte Carlo simulation of radon progeny caused dose. J Radiol Prot 2018;38(3):990. https://doi.org/10.1088/1361-6498/aac987.

[29] Beir V, Council NR. Health effects of exposure to radon. Committee on health risks of exposure to radon, Board on radiation effects research, Commission on life sciences. National Research Council; 1999.

[30] Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol 2013; 3(4):1437. https://doi.org/10.1002/cphy.c100085.

[31] Yeh H-C, Schum G. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 1980;42(3):461e80. https://doi.org/10.1016/S0092-8240(80) 80060-7.

[32] Schum M, Yeh H-C. Theoretical evaluation of aerosol deposition in anatomical models of mammalian lung airways. Bull Math Biol 1980;42(1):1e15.

[33] Wang C-S. Inhaled particles. Elsevier; 2005. eBook ISBN: 9780080455013.

[34] Asgharian B, Hofmann W, Miller F. Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. J Aerosol Sci 2001;32(6):817e32. https://doi.org/ 10.1016/S0021-8502(00)00121-X.

[35] (NCRP). National council on radiation protection and measurements. Deposition, retention and dosimetry of inhaled radioactive substances NCRP report No 125 NCRP. Bethes; 1997.

[36] Felicetti SA, Wolff RK, Muggenburg BA. Comparison of tracheal mucous transport in rats, Guinea pigs, rabbits, and dogs. J Appl Physiol 1981;51(6):1612e7. https://doi.org/10. 1152/jappl.1981.51.6.1612.

[37] ICRP. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w R) ICRP Publication 92: approved by the Commission in January 2003. Ann ICRP 2003;33(4):1e121.

[38] Marsh J, Birchall A. Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny. Radiat Protect Dosim 2000;87(3):167e78. https://doi.org/10. 1093/oxfordjournals.rpd.a032993.

[39] Keith S, Doyle J, Harper C, Mumtaz M, Tarrago O, Wohlers D, et al. Toxicological profile for radon. Atlanta (GA): agency for toxic substances and disease registry (US). Appendix D, overview of basic radiation physics. Chemistry, and biology. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK158792/.

[40] Winkler-Heil R, Hussain M, Hofmann W. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment. Radiat Environ Biophys 2015;54:225e41. https://doi.org/10.1007/s00411-015- 0591-8.

[41] James AC, Birchall A, Akabani G. Comparative dosimetry of BEIR VI revisited. Radiat Protect Dosim 2004;108(1):3e26. https://doi.org/10.1093/rpd/nch007.

[42] Marsh J, Birchall A, Davis K. Comparative dosimetry in homes and mines: estimation of K-factors. Elsevier Radioact Environ 2005;7:290e8. https://doi.org/10.1016/S1569-4860(04) 07032-9.

[43] Nikezic D, Lau B, Stevanovic N, Yu K. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung. J Environ Radioact 2006;89(1): 18e29. https://doi.org/10.1016/j.jenvrad.2006.03.001.

[44] Porstendorfer J. Physical parameters and dose factors of the € radon and thoron decay products. Radiat Protect Dosim 2001;94(4):365e73. https://doi.org/10.1093/oxfordjournals. rpd.a006512.

[45] Comparison of modeling concepts for radon progeny lung dosimetry. ElsevierWinkler-Heil R, Hofmann W, editors. Int Congr 2002. https://doi.org/10.1016/S0531-5131(01)00506-4.

[46] UNSCEAR Ia. ICRP and UNSCEAR. Information note for participants at the IAEA TechnicalMeeting on the implications of the new dose conversion factorsfor radon, 1-4 Oct 2019. 2019. https://wwwns.iaea.org/committees/files/ RASSC/1947/ICRP-UNSCEARInformationNoteonRadon.pdf (2020).

[47] UNSCEAR. Report ofthe united nations scientific committee on the effects of atomic radiation. UNSCEAR 2019 report, annex B, lung cancerfrom exposure to radon. New York: United Nations; 2020. p. 2020.

[48] ICRP. International commission ofRadiation units and measurements. Measurement andreporting ofradon exposures. ICRU report 88. J ICRU 2012;12(2):2012.

[49] Elzain A-EA. Assessment of environmental health risks due to indoor radon levels inside workplaces in Sudan. Int J Environ Anal Chem 2021:1e17. https://doi.org/10.1080/ 03067319.2021.1873317

Included in

Nuclear Commons

Share

COinS