Document Type
Original Article
Abstract
This study used the sol-gel spin coating process to generate a thin film of titanium dioxide nanoparticles (TiO2NPs) on silicon substrates for photodetectors. This method is simple, fast, cost-effective, ecologically friendly, and appropriate for large-scale manufacturing. The size, shape, crystal structure, and optical and electrical characteristics of the produced nanoparticles were investigated using high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction, UV-VIS spectroscopy, and Hall effect measurements. The data show that the particles are 15e20 nm in size and exhibit the anatase crystallite phase of titanium dioxide. The optical measurements revealed that the TiO2NPs generated on the glass substrate had an optical energy band gap of 3.35 eV. The Hall Effect measurements showed that the generated films were n-type. TiO2NPs/Si heterojunction exhibited diode-like rectifying IeV characteristics in dark and light conditions. The ideality factor exceeded two, and the rectification factor for TiO2NPs/Si was 32.0891. The photoelectric capabilities of the produced photodetectors were evaluated using a bias voltage of 1 volt. According to the currentevoltage curve, a photodetector of anatase TiO2NPs/Si heterojunction exhibits a high responsivity of 6 A/W at 375 nm and 70.225 A/W at 545 nm. Additionally, it has an incident photon-to-current conversion efficiency (IPCE) of 6.0% at 370 nm and 12.8% at 565 nm.
Keywords
TiO2, Sol-gel, Spin coating, Photodetectors, Responsivity
How to Cite This Article
Kurda, Ahmed Hassan; Kakil, Shaida Anwar; and Hassan, Yousif Mawlood
(2024)
"High Responsivity of Sol-gel TiO2NPs/Si Photodetectors Deposited by Spin Coating Method,"
Polytechnic Journal: Vol. 14:
Iss.
2, Article 2.
DOI: https://doi.org/10.59341/2707-7799.1832
References
[1] Yan H, Wang X, Yao M, Yao X. Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Prog Nat Sci: Mater Int 2013 Aug 1;23(4):402e7. https://doi.org/10.1016/j.pnsc.2013.06.002.
[2] Mowbray DJ, Martinez JI, García Lastra JM, Thygesen KS, Jacobsen KW. Stability and electronic properties of TiO2 nanostructures with and without B and N doping. J Phys Chem C2009 Jul 16;113(28):12301e8. https://doi.org/10.1021/ jp904672p.
[3] Mont FW, Kim JK, Schubert MF, Schubert EF, Siegel RW. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. J Appl Phys 2008 Apr 15; 103(8). https://doi.org/10.1063/1.2903484.
[4] He D, Hu Y, Tao J, Zheng X, Liu H, Jing G, et al. Microfiber with a cladding of titanium dioxide (TiO2) nanoparticles and its violet light sensing. Opt Mater Express 2017 Jan 1;7(1): 264e72. https://doi.org/10.1364/OME.7.000264.
[5] Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P. Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 2014 Oct 8;114(19):10095e130. https://doi.org/10. 1021/cr400606n.
[6] Wang Y, Wu T, Zhou Y, Meng C, Zhu W, Liu L. TiO2-based nanostructures for promoting gas sensitivity performance:designs, developments, and prospects. Sensors 2017 Aug 27; 17(9):1971. https://doi.org/10.3390/s17091971.
[7] Li X, Zheng W, He G, Zhao R, Liu D. Morphology control of TiO2 nanoparticles in microemulsions and their photocatalytic properties. ACS Sustainable Chem Eng 2014 Feb 3; 2(2):288e95. https://doi.org/10.1021/sc400328u.
[8] Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 2007 Jul 11;107(7):2891e959. https://doi.org/10.1021/cr0500535.
[9] Lal M, Chhabra V, Ayyub P, Maitra A. Preparation and characterization of ultrafine TiO2 particles in reverse micelles by hydrolysis of titanium di-ethylhexyl sulfosuccinate. J Mater Res 1998 May;13(5):1249e54. https://doi.org/10.1021/ cr0500535.
[10] Bacsa RR, Gr€atzel M. Rutile formation in hydrothermally crystallized nanosized titania. J AmCeramSoc1996Aug;79(8): 2185e8. https://doi.org/10.1111/j.1151-2916.1996.tb08956.x.
[11] Kutty TR, Vivekanandan R, Murugaraj P. Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M ¼ Ba, Sr, Ca) by the hydrothermal method. Mater Chem Phys 1988 Jul 1;19(6):533e46. https://doi.org/10. 1016/0254-0584(88)90045-4.
[12] Campbell LK, Na BK, Ko EI. Synthesis and characterization of titania aerogels. Chem Mater 1992 Nov 1;4(6):1329e33. https://doi.org/10.1021/cm00024a037.
[13] Rao AP, Robin AI, Komarneni S. Bismuth titanate from nanocomposite and sol-gel processes. Mater Lett 1996 Oct 1; 28(4e6):469e73. https://doi.org/10.1016/0167-577X(96)00107-3.
[14] Vieira DF, Pawlicka A. Optimization of performances of gelatine/LiBF4-based polymer electrolytes by plasticizing effects. Electrochemical Acta 2010 Jan 25;55(4):1489e94. https://doi.org/10.1016/j.electacta.2009.04.039.
[15]BalachandranK,VenkateshR,SivarajRajeshwari.Synthesisof nanoTiO2-SiO2compositesusingthesol-gelmethod:effecton the size, surface morphology, and thermal stability. 2010. p. 3695. 3695, https://www.sid.ir/journal/issue/130042/en.
[16] Cheng P, Deng C, Gu M, Dai X. Effect of urea on the photoactivity of titania powder prepared by the sol-gel method. Mater Chem Phys 2008 Jan 15;107(1):77e81. https://doi.org/ 10.1016/j.matchemphys.2007.06.051.
[17] Tyona MD. A comprehensive study of spin coating as a thin f ilm deposition technique and spin coating equipment. Adv Mater Res 2013 Dec;2(4):181. https://doi.org/10.12989/amr. 2013.2.4.181.
[18] Antic Z, Krsmanovic RM, Nikolic MG, MarinovicCincovic M, Mitric M, Polizzi S, et al. Multisite luminescence of rare earth-doped TiO2 anatase nanoparticles. Mater Chem Phys 2012 Aug 15;135(2e3):1064e9. https://doi.org/10.1016/j. matchemphys.2012.06.016.
[19] Thamaphat K, Limsuwan P, Ngotawornchai B. Phase characterization of TiO2 powder by XRD and TEM. Agric Nat Resour 2008 Dec 31;42(5):357e61.
[20] Theivasanthi T, Alagar M. Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. arXiv preprint arXiv:1307. 1091, https://doi.org/10.48550/arXiv.1307.1091; 2013 Jul 2.
[21] Majeed Khan MA, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS. Structural and thermal studies of silver nanoparticles and electrical transport studies of their thin films. Nanoscale Res Lett 2011 Dec;6:1e8. http://www. nanoscalereslett.com/content/6/1/434.
[22] Sirdeshmukh DB, Sirdeshmukh L, Subhadra KG. Microand macro-properties of solids. Heidelberg: Springer Verlag; 2006. https://citations.springernature.com/book?doi¼10.1007/ 3-540-31786-4.
[23] Qin W, Nagase T, Umakoshi Y, Szpunar JA. Relationship between microstrain and lattice parameter change in nanocrystalline materials. Phil Mag Lett 2008 Mar 1;88(3):169e79. https://doi.org/10.1080/09500830701840155.
[24] Ghosh SC, Thanachayanont C, Dutta J. Studies on zinc sulf ide nanoparticles for field emission devices. In: Proceedings of the first ECTI annual conference (ECTI-CON 2004), Pattaya, Thailand; May 2004. p. 13e4. https://doi.org/10.1016/j. stam.2005.03.006.
[25] Shih WS, Young SJ, Ji LW, Water W, Shiu HW. TiO2-based thin film transistors with amorphous and anatase channel layers. J Electrochem Soc 2011 Mar 29;158(6):H609e11. https://iopscience.iop.org/article/10.1149/1.3561271/meta#: ~:text¼DOI%2010.1149/1.3561271.
[26] Slav A. Optical characterization of TiO2-Ge nanocomposite f ilms obtained by reactive magnetron sputtering. Dig J Nanomater Biostruct 2011 Jul 1;6(3):915e20. https://www. researchgate.net/401590601683745/download/Taucþ3.pdf.
[27] Avinash BS, Chaturmukha VS, Jayanna HS, Naveen CS, Rajeeva MP, Harish BM, et al. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial. In AIP conference proceedings 2016 May 6 (Vol. 1728, No. 1). AIP Publishing. https://doi.org/10.1063/1.4946477.
[28] Chang YH, Liu CM, Chen C, Cheng HE. The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction. Nanoscale Res Lett 2012 Dec;7:1e7. http://www.nanoscalereslett.com/ content/7/1/231.
[29] Sharma BL, Purohit RK. Semiconductors heterojunctions. New York: Academic Prees, Inc., Oxford; 2015, December 4. p. 1e15. https://books.google.iq/books?id¼.
[30] Milnes AG. Heterojunctions and metal-semiconductor junctions. Elsevier; 2012, December 2. https://books.google. iq/books?id¼.
[31] Sze SM. Semiconductor devices: physics and technology. John Wiley & Sons; 2008. https://biu.primo.exlibrisgroup. com/discovery/fulldisplay?context¼.
[32] Shiv P, Pivin JC, Siva KV, Tripathi A, Kanjilal D, Kumar L. Vacuum 2010;85:307e11. https://doi.org/10.1016/j.vacuum. 2010.06.011.
[33] Çetinkaya HG, Yõldõrõm M, Durmus ¸ P, Altõndal S ¸. Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. J Alloys Compd 2017 Oct 15;721: 750e6. https://doi.org/10.1016/j.jallcom.2017.06.037.
[34] Yeganeh MA, Rahmatollahpur SH. Barrier height and ideality factor dependency on identically produced small Au/pSi Schottky barrier diodes. J Semiconduct 2010 Jul 1;31(7): 074001. https://iopscience.iop.org/article/:text¼DOI%2010. 1088/1674%2D4926/31/7/074001.
[35] Kumar A, Sharma KK, Chand S, Kumar A. Investigation of barrier inhomogeneities in IV and CV characteristics of Ni/nTiO2/p-Si/Al heterostructure in wide temperature range. Superlattice Microst 2018 Oct 1;122:304e15. https://doi.org/ 10.1016/j.spmi.2018.07.034.
[36] Pal S, Jana S, Kamparath R, Bhunia S, Sharma N, Karwal S, et al. PMMA as an Additive for Nanostructured TiO2 Thin Films for Heterojunction Visible-Blind Photodetectors. ACS Appl Nano Mater 2024 Jan 31;7(3):3339e51. https://doi.org/ 10.1021/acsanm.3c05745.
[37] Nasr TB, Kamoun N, Kanzari M, Bennaceur R. Effect of pH on the properties of ZnS thin films grown by chemical bath deposition. Thin Solid Films 2006 Apr 3;500(1e2):4e8. https://doi.org/10.1016/j.tsf.2005.11.030.
[38] Hamdan SA, Ibrahim IM, Ali IM. Photodetector based on rutile and anatase TiO2 nanostructures/n-Si heterojunction. J Phys Conf 2021 Dec 1;2114(1):012025. IOP Publishing, https:// iopscience.iop.org/article/10.1088/1742-6596/2114/1/012025.
[39] Nasir EM. Fabrication and characterization of n-ZnS/p-Si and n-ZnS: Al/p-Si heterojunction. Int J Eng Adv Technol 2013;3(2):425e9. ISSN: 2249e429.
[40] Sze SM, Ng Kwok K. Physics of semiconductor devices. third ed. New York: John Wiley & Sons, Inc., Hoboken, New Jersey; 2007. https://www.wiley.com/enus/Physicsþofþ SemiconductorþDevices%2Cþ4thþEdition-p-9781119429111.
[41] Yu J, Ippolito SJ, Wlodarski W, Strano M, Kalantar-Zadeh K. Nanorod-based Schottky contact gas sensors in reversed bias condition. Nanotechnology 2010 Jun 10;21(26):265502. https:// iopscience.iop.org/article/10.1088/0957-4484/21/26/265502.
[42] Chuang SL. Physics of photonic devices. John Wiley & Sons; 2012, November 7. https://books.google.iq/books?id¼ lUjijKFVn6EC&lpg¼PR3&ots¼nB6UDXHl6-&dq.
[43] Chauhan KR, Patel DB. Functional nanocrystalline TiO2 thin f ilms for UV-enhanced highly responsive silicon photodetectors. J Alloys Compd 2019 Jul 5;792:968e75. https://doi. org/10.1016/j.jallcom.2019.04.111.
[44] Chen J, Ouyang W, Yang W, He JH, Fang X. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv Funct Mater 2020 Apr;30(16):1909909. https://doi.org/10.1002/adfm.20190 9909.
[45] Zhao F, Yi Y, Lin J, Yi Z, Qin F, Zheng Y, et al. The better photoelectric performance of thin-film TiO2/c-Si heterojunction solar cells based on surface plasmon resonance. Results Phys 2021 Sep 1;28:104628. https://doi.org/10.1016/j. rinp.2021.104628.
[46] Das Mahapatra A, Das A, Ghosh S, Basak D. Defect-assisted broad-band photosensitivity with high responsivity in Au/ self-seeded TiO2 NR/Au-based back-to-back Schottky junctions. ACS Omega 2019 Jan 16;4(1):1364e74. https://doi.org/ 10.1021/acsomega.8b03084.
[47] Gour KS, Singh OP, Bhattacharyya B, Parmar R, Husale S, Senguttuvan TD, et al. Enhanced photoresponse of Cu2ZnSn(S, Se) 4-based photodetector in the visible range. J Alloys Compd 2017 Feb 15;694:119e23. https://doi.org/10.1016/j. jallcom.2016.09.299.
[48] Kumar H, Kumar S. Indium sulfide-based metal-semiconductor-metal ultraviolet-visible photodetector. Sensor Actuator Phys 2019 Nov 1;299:111643. https://doi.org/10. 1016/j.sna.2019.111643.
[49] Banerjee D, Asuo IM, Pignolet A, Cloutier SG. Low-cost photodetector architectures fabricated at room temperature using nano-engineered silicon wafers and sol-gel TiO2ebased heterostructures. Sci Rep 2019 Nov 29;9(1):17994. https://doi. org/10.1038/s41598-019-54481-8.
[50] Ji T, Liu Q, Zou R, Zhang Y, Wang L, Sang L, et al. Enhanced UV-visible light photodetectors with a TiO 2/Si heterojunction using band engineering. J Mater Chem C 2017;5(48): 12848e56. https://doi.org/10.1039/C7TC04811D.
[51] Hadi AJ, Nayef UM, Mutlak FA, Jabir MS. Improvement spectral responsivity of TiO2 nanoparticles via pulsed laser deposition deposited on silicon nanostructures. Silicon 2024 Apr 30:1e6. https://link.springer.com/article/10.1007/s12633024-03007-7.
Follow us: