•  
  •  
 

Corresponding Author

Sahand Kamal Khidr

Authors ORCID

Sahand K.khidr https://orcid.org/0000-0003-4685-6173 Qasim A. Marzani https://orcid.org/0000-0002-1329-0356 Waran N. Agha https://orcid.org/0000-0003-4685-6173

Document Type

Original Article

Abstract

This study was conducted to evaluate the efficacy of four entomopathogenic fungi against the red flour beetle, Tribolium castaneum (Herbst) as an alternative to chemical pesticides. The adult stage inside stored wheat was subjected to different concentrations of Beauveria bassiana (Balsamo), Metarhizium anisopliae (Metsch), Verticillium lecanii (Zimmerman), and Paecilomyces ilacinus (Thoms) in either Petri-plates at 7, 15 and 22 days or bag storage at 20, 40 and 60 days exposure times. The first experiment indicated that V. lecanii achieved maximum mortality (58.89 and 57.5%) via interaction with the highest dose of 0.748 × 107 and maximum exposure time of 22 days respectively. The adults required the lowest concentration of V. lecanii to achieve an average LC50 (6233697 mg) within various exposure times. Regarding the latter experiment (liquid assay), the least survivorship (41.25) was observed by P. ilacinus followed by V. lecanii (56.25) during 60 days of exposure time. On the other hand, the powder assay revealed that the highest mortality (57.08 and 48.75) of adults inside bags was recorded respectively via the interaction terms between V. lecanii with both the highest concentration (1000 mg) and exposure times (60 days) and the LC50 value of the aforementioned bioagent was (240.02) for 60 days treatment followed by B. bassiana. The study suggests that the use of biopesticides can provide significant insight in the management of pests while minimize the weight loss of stored wheat and thus, can be used as an effective alternative or integrated with chemical pesticides in pest management strategies.

Keywords

Biocontrol, Tribolium castaneum, Entomopathogenic fungi, Pest management, Stored wheat

References

[1] Gregory PJ, George TS. Feeding nine billion: The challenge to sustainable crop production. J Experiment Bot 2011;62(15): 5233e9. https://doi.org/10.1093/jxb/err232.

[2] Tadesse W, Bishaw Z, Assefa S. Wheat production and breeding in Sub-Saharan Africa challenges and opportunities in the face of climate change. Int Center Agric Res Dry Areas 2018;5(11):696e715. https://doi.org/10.1108/IJCCSM02-2018-0015. Beirut, Lebanon.

[3] Kumar P, Yadava R, Gollen B, Kumar S, Verma RK, Yadav S. Nutritional contents and medicinal properties of wheat: a review. Life Sci Med Res 2011;22:1e10. http://astonjournals. com/lsmr.

[4] Igrejas G, Branlard G. The importance of wheat. Wheat Quality Improv Proces Human Health 2020:1e7. https://doi. org/10.1007/978-3-030-34163-3.

[5] Sharma S, Choudhary AK. Storage pests management. New Delhi: Mahamaya Publishing House; 2008.

[6] Ismail AYH. Pests of stored products. Iraq: University Of Mosul; 2014. p. 303 [In Arabic)].

[7] Atta B, Rizwan M, Sabir AM, Gogi MD, Ali K. Damage potential of Tribolium castaneum (Herbst)(Coleoptera: tenebrionidae) on wheat grains stored in hermetic and nonhermetic storage bags. Int J Trop Insect Sci 2020;40(1):27e37. https://doi.org/10.1007/s42690-019-00047-0.

[8] Zettler LJ. Pesticide resistance in Tribolium castaneum and T. Confusum (Coleoptera: tenebrionidae) from flour mills in the United States. J Econ Entomol 1991;84:763e7. https://doi.org/ 10.1093/jee/84.3.763.

[9] Batta YA, Kavallieratos NG. The use of entomopathogenic fungi for the control of stored-grain insects. Int J Pest Manag 2018;64(1):77e87. https://doi.org/10.1080/09670874.2017. 1329565.

[10] Mantzoukas S, Lagogiannis I, Kitsiou F, Eliopoulos PA. Entomopathogenic action of wild fungal strains against stored product beetle pests. Insects 2023;14(1):91. https://doi.org/10.3390/insects14010091.

[11] Adegbola RQ, Adegbola AJ, Sanni LO. Entomopathogenic fungi as myco-biocontrol agent of stored grain insect pests. Nigerian J Agricul Agricul Technol 2024;4(1):59e73. https://doi.org/10.59331/njaat.v4i2.

[12] Anand R, Tiwary BN. Pathogenicity of entomopathogenic fungi to eggs and larvae of Spodoptera litura, the common cutworm. Biocontrol Sci Technol 2009;19:919e29. https://doi. org/10.1080/09583150903205069.

[13] Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, et al. Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 2021;159:105122. https://doi.org/10. 1016/j.micpath.2021;105122.

[14] Schrank A, Vainstein MH. Metarhizium anisopliae enzymes and toxins. Toxicon 2010;56(7):1267e74. https://doi.org/10. 1016/j.toxicon.2010.03.008.

[15] Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2012;2:483.https://doi.org/10.1038/srep00483. 2012.

[16] Butt T, Coates C, Dubovskiy I, Ratcliffe N. Entomopathogenic fungi: new insights into host-pathogen interactions. Advances in genetics. Elsevier; 2016. https://doi.org/10.1016/ bs.adgen.2016.01.006.

[17] Omer ZZ, Rashid TS, Awla HK. Influence of two varieties of broad bean and Beauveria bassiana (Blas) on Aphis fabae Scop. under field conditions. Polytechnic Journal 2019;9(2):3. https://doi.org/10.25156/ptj.v9n2y2019.pp16-19.

[18] Cherry A, Abalo P, Hell K. A Laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F. )(Coleoptera: bruchidae) in Stored Cowpea. J Stored Prod Res 2005;41:295e309. https://doi.org/10.1016/j.jspr.2004.04. 002.

[19] Barra P, Rosso L, Nesci A, Etcheverry M. Isolation and identification of entomopathogenic fungi and their evaluation against Tribolium confusum, Sitophilus zeamais, and Rhyzopertha dominica in stored maize. J Pest Sci 2013;86:217e26. https://doi.org/10.1007/s10340-012-0460-z.

[20] Singh S, Prakash S. Effect of temperature and humidity on the culture of Tribolium castaneum, Herbst (Coleoptera: tenebrionidae) in the laboratory. Intern J Sci Res Pub 2015;5:1e6.

[21] Khidr SK, Agha WNA, Amin AH. Molecular identification and evaluation of some aqueous plant extracts for the control of three stored product insect species on dried fruits. Science Journal Of Zakho University 2017;5:176e86. https://doi.org/ 10.25271/2017.5.2.365.

[22] Khidr SK, Abdulla SS. Molecular identification and biological control of tomato leafminer, Tuta absoluta using plant extracts and microbial bio-agents. Arab J Plant Protect 2023; 41(4). https://doi.org/10.22268/AJPP-41.4.427436.

[23] Oliveira DGP, Pauli G, Mascarin GM, Delalibera I. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. J Microbiol Methods 2015;119:44e52. https://doi.org/10.1016/j.mimet.2015.09.021.

[24] Khidr SK, Khalil SM. An integrated methods to manage the corn ground beetle (Zabrus tenebrioides Goeze) in wheat field. Journal of the Saudi Society of Agricultural Sciences 2024; 2024:1e11. https://doi.org/10.1016/j.jssas.2024.08.001.

[25] Padõn S, Dal Bello G, Fabrizio M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J Stored Prod Res 2002;38(1):69e74. https://doi.org/ 10.1016/S0022-474X(00)00046-1.

[26] Wakil W, Kavallieratos NG, Eleftheriadou N, Riasat T, Ghazanfar MU, Rasool KG, et al. The potential of two entomopathogenic fungi and enhanced diatomaceous earth mixed with abamectin: a comprehensive study on mortality, progeny production, application method, and surface application against Tribolium castaneum. Pathogens 2023; 12(6):773. https://doi.org/10.3390/pathogens12060773.

[27] Al-Ani LKT, Yonus MI, Mahdii BA, Omer MA, Taher JK, Albaayit SFA, et al. First record of the use Fusarium proliferatum fungi in direct treatment to control the adult wheat f lour Tribolium confusum, as well as, the use of the entomopathogenic fungi Beauveria bassiana. Ecol Environ Conserv 2018;24(3):29e34.

[28] Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M, Habib A, El-Shafie HA. Efficacy of different entomopathogenic fungal isolates against four key stored-grain beetle species. J Stored Prod Res 2021;93:101845. https://doi.org/10. 1016/j.jspr.2021.101845.

[29] Hassuba MM, Gad HA, Atta AA, Abdelgaleil SA. Efficacy of entomopathogenic fungi for the management of Trogoderma granarium Everts on wheat grains. Int J Trop Insect Sci 2024: 1e8. https://doi.org/10.1007/s42690-024-01253-1.

[30] Khater K, Shoukry I, Abdel-Aziz AAE, Saad NA. Influence of some biological control measures on Tribolium castaneum (Coleoptera: tenebrionidae). Catrina: Int J Environ Sci 2023; 28(1):61e71. https://doi.org/10.21608/cat.2023.210416.1175.

[31] Moino JRA, Alves S, Pereira R. Efficacy of Beauveria bassiana (Balsamo) Vuillemin isolates for control of stored-grain pests. J Appl Entomol 1998;122:301e5. https://doi.org/10. 1111/j.1439-0418.1998.tb01501.x. 1998.

[32] Faria M, Lopes RB, Souza DA, Wraight SP. Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. J Invertebr Pathol 2015;125:68e72. https://doi.org/10. 1016/j.jip.2014.12.012.

[33] Akmal M, Freed S, Bilal M, Malik MN. A Laboratory evaluation for the potential of entomopathogenic fungi against Tribolium castaneum (Herbst.)(Coleoptera: tenebrionidae). Turkish J Agricul-Food Sci Technol 2020;8(6):1232e5. https:// doi.org/10.24925/Turjaf.V8i6.1232-1235.1460.

[34] Bhatti MHT, Ahmad S, Bilal S, Iqbal M. Evaluation of different strains of entmopathogenic fungi as potential agents for the management of Tribolium castaneum. Bulletin of Biol Allied Sci Res 2023;(1). https://doi.org/10.54112/bbasr. v2023i1.52. 52-52.

[35] Hajek AE, Eilenberg J. Natural enemies: an introduction to biological control. Cambridge University Press; 2018. https:// doi.org/10.1017/9781107280267.

[36] Altinok HH, Altinok MA, Koca AS. Modes of action of entomopathogenic fungi. Current Trends In Natural Sciences 2019;8:117e24. http://www.natsci.upit.ro/.

[37] Schreiter G, Butt T, Beckett A, Vestergaard S, Moritz G. Invasion and development of Verticillium lecanii in the western f lower thrips, Frankliniella occidentalis. Mycol Res 1994;98: 1025e34. https://doi.org/10.1016/S0953-7562(09)80429-2.

[38] Ortiz-Urquiza A, Keyhani NO. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 2013;4: 357e74. https://doi.org/10.3390/insects4030357.

[39] Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A lifeand-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024;14:1329843. https://doi.org/10.3389/fimmu.2023. 1329843.

[40] Xia Y, Gao M,Clarkson JM, Charnley AK.Molecular cloning, characterisation, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 2002;80:127e37. https://doi.org/10.1016/ s0022-2011(02)00124-6.

[41] Sabbour M, Shadia E. The effect of some microbial control agents and some plant oils against Bruchidius incarnates. J Plant Protect Res 2010;50:28e34. https://doi.org/10.2478/ v10045-010-0005-5.

[42] Sharma R, Sharma P. Fungal Entomopathogens: a systematic review. Egyptian Journal Of Biological Pest Control 2021;31: 1e13. https://doi.org/10.1186/s41938-021-00404-7.

[43] Hidalgo E, Moore D, Le Patourel G. The effect of different formulations of Beauveria bassiana on Sitophilus zeamais in stored maize. J Stored Prod Res 1998;34:171e9. https://doi. org/10.1016/S0022-474X(97)00041-6.

[44] Sharma N, Bhandari A, editors. Bio-management of postharvest diseases and Mycotoxigenic fungi. CRC Press; 2020. https://doi.org/10.1201/9781003089223.

[45] Batta YA. Efficacy of two species of entomopathogenic fungi against the stored-grain pest, Sitophilus granarius L. (Curculionidae: Coleoptera), via oral ingestion. Egyptian Journal Of Biological Pest Control 2018;28:44.7. https://doi.org/10.1186/ s41938-018-0048-x.

[46] Wakil W, Ghazanfar MU, Kwon YJ, Ullah E, Islam S, Ali K. Testing Paecilomyces lilacinus, diatomaceous earth and Azadirachta Indica alone and in combination against cotton aphid (Aphis gossypii Glover)(Insecta: homoptera: aphididae). Afr J Biotechnol 2012;11:821e8. https://doi.org/10.5897/AJB11. 2446.

[47] Lopes RB, Faria M. Influence of two formulation types and moisture levels on the storage stability and insecticidal activity of Beauveria bassiana. Biocontrol Sci Technol 2019;29(5): 437e50. https://doi.org/10.1080/09583157.2019.1566436.

[48] Adane K, Moore D, Archer S. Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera:Curculionidae) in the Laboratory. J Stored Prod Res 1996;32: 105e13. https://doi.org/10.1016/0022-474X(96)00009-4.

[49] HongT, Ellis R, Moore D. Development of a model to predict the effect of temperature and moisture on fungal spore longevity. Annals Of Botany 1997;79:121e8. https://doi.org/ 10.1006/anbo.1996.0316.

[50] Lord JC. Low humidity, moderate temperature, and desiccant dust favor the efficacy of Beauveria bassiana (Hyphomycetes: moniliales) for the lesser grain borer, Rhyzopertha dominica (Coleoptera: bruchidae). Biol Control 2005;34:180e6. https://doi.org/10.1016/j.biocontrol.2005.05.004.

[51] Lord JC. Desiccation increases the efficacy of beauveria bassiana for stored-grain pest insect control. J Stored Prod Res 2007;43:535e9. https://doi.org/10.1016/j.jspr.2007.03.002. 2007.

[52] Athanassiou C, Steenberg T. Insecticidal effect of Beauveria bassiana (balsamo) vuillemin (ascomycota: hypocreaes) in combination with three diatomaceous earth formulations against Sitophilus granarius (L.)(Coleoptera: Curculionidae). Biol Control 2007;40:411e6. https://doi.org/10.1016/j.biocontrol.2006.12.001.

[53] Rajendran S. Insect pest management in stored products. Outlooks Pest Manag 2020;31:24e35. https://doi.org/10.1564/ v31_feb_05.

[54] Broumandnia F, Rajabpour A. Efficacies of some isolates of Lecanicillium lecanii to control Tribolium castaneum (Col., Tenebrionidae). J Plant Dis Prot 2020;127(5):625e31. https:// doi.org/10.1007/s41348-020-00324-y. [55] Wsjjee Abbott. A method of computing the effectiveness of an insecticide. J Econ Entomol 1925;18:265e7. https://doi.org/ 10.1093/jee/18.2.265a.

[55] Wsjjee Abbott. A method of computing the effectiveness of an insecticide. J Econ Entomol 1925;18:265e7. https://doi.org/ 10.1093/jee/18.2.265a.

[56] Abdel-Raheem MA, Amin MY, Eman ME. Effectiveness of entomopathogenic fungi and plant extract against the rustred flour beetle Tribolium castaneum (Coleoptera: tenebrionidae) adults. Egyptian Journal of Plant Protection Research Institute 2024;7(1):158e67.

[57] Abdullahi G, MuhamadR, Dzolkhifli O, Sinniah Ur. Damage potential of Tribolium castaneum (herbst) (coleoptera: tenebrionidae) on Cocoa beans: effect of initial adult population density and post infestation storage time. J Stored Prod Res 2018;75:1e9. https://doi.org/10.1016/j.jspr.2017.11.001.

[58] Dal Bello G, Padin S, Lastra CL, Fabrizio M. Laboratory evaluation of chemical-biological control of the rice weevil (Sitophilus oryzae L.) in stored grains. J Stored Prod Res 2000; 37:77e84. https://doi.org/10.1016/S0022-474X(00)00009-6.

[59] Khidr SK, Khalil SM. The effect of field application through compost and uncompost fertilizers on major chickpea insect pests and natural enemies. Polytechnic Journal 2017;7(4):2. https://doi.org/10.25156/ptj.2017.7.4.46.

[60] Ranjan V, Sharma M, Sur A. Beauveria bassiana as a potent biopesticide for control of locust: a review. Research Reports 2021;5. https://doi.org/10.9777/rr.2020.10006.

[61] R€ osner J, Wellmeyer B, Merzendorfer H. Tribolium castaneum: a model for investigating the mode of action of insecticides and mechanisms of resistance. Curr Pharmaceut Des 2020; 26(29):3554e68. https://doi.org/10.2174/138161282666620051 3113140.

[62] Roy HE, Brodie EL, Chandler D, Goettel MS, Pell JK, Wajnberg E, et al. Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. In: The ecology of fungal entomopathogens. Springer; 2009. https://doi.10.1007/s10526-009-9244-7.

Share

COinS