•  
  •  
 

Corresponding Author

Ali Ben Ahmed

Authors ORCID

https://orcid.org/0000-0001-8560-2630

Document Type

Original Article

Abstract

Intending to predict the multifunctionality of Nickel ferrite in several technological and medical fields, we have prepared nickel ferrite nanostructure by coprecipitation method. X-ray Diffraction (XRD) is used to determine the crystalline structure and phase composition of materials by analyzing the pattern of X-rays scattered by the atoms within the material. Fourier Transform Infrared Spectroscopy (FTIR) provides information about a material's chemical bonds and functional groups by analyzing how it absorbs infrared light at various wavelengths. Scanning Electron Microscopy (SEM) offers high-resolution images of the material's surface morphology and texture by scanning it with a focused beam of electrons. Transmission Electron Microscopy (TEM) provides detailed images at the atomic or nanometer scale, allowing for the examination of the internal structure, crystallinity, and defects of a material. UV-visible spectroscopy measures the absorbance of ultraviolet or visible light by a material, which can give insight into its electronic structure, band gap, and optical properties. These analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range . The principal quantum chemical descriptors have been analyzed and discussed. Additionally, the theoretical background of nickel ferrite was carved out using Density Functional Theory (DFT) by evaluating the electronic structure through the Frontier Molecular Orbital, Molecular Electrostatic Potential, Milliken charge distribution, Density of state spectrum, and nonlinear optical parameters embedded within the nickel ferrite molecule. Based on all these results, nickel ferrite can be considered as a multifunctional material.

Keywords

Nanostructures, Nickel Ferrite, Computational investigation, chemical descriptors, Nonlinear Optical

References

[1] Karakas ¸ ZK, Boncukçuoglu R, Karakas ¸ _ IH. The effects of fuel type in synthesis of NiFe 2 O 4 nanoparticles by microwave assisted combustion method. J Phys Conf 2016;707:012046. https://doi.org/10.1088/1742-6596/707/1/012046.

[2] Pourshojaei Y, Zolala F, Eskandari K, Talebi M, Morsali L, Amiri M, Khodadadi A, Shamsimeymandi R, FaghihMirzaei E, Asadipour A. Nickel Ferrite (NiFe 2 O 4) Nanoparticles as Magnetically Recyclable Nanocatalyst for Highly Efficient Synthesis of 4H-Chromene Derivatives. J Nanosci Nanotechnol 2020;20:3206e16. https://doi.org/10.1166/jnn. 2020.17396.

[3] Sen R, Jain P, Patidar R, Srivastava S, Rana RS, Gupta N. Synthesis and Characterization of Nickel Ferrite (NiFe2O4) NanoparticlesPreparedbySol-GelMethod.MaterTodayProc 2015;2:3750e7. https://doi.org/10.1016/j.matpr.2015.07.165.

[4] George M, Mary John A, Nair SS, Joy PA, Anantharaman MR. Finite size effects on the structural and magnetic properties of solegel synthesized NiFe2O4 powders. J Magn Magn Mater 2006;302:190e5. https://doi.org/10. 1016/j.jmmm.2005.08.029.

[5] Dongale TD, Khot SS, Patil AA, Wagh SV, Patil PB, Dubal DP, Kim TG. Bifunctional nanoparticulated nickel ferrite thin films: Resistive memory and aqueous battery applications. Mater Des 2021;201:109493. https://doi.org/10. 1016/j.matdes.2021.109493.

[6] Kurda AH, Kakil SA, Hassan YM. High Responsivity of Solgel TiO2NPs/Si Photodetectors Deposited by Spin Coating Method. Polytechnic Journal 2024;14. https://doi.org/10. 59341/2707-7799.1832.

[7] Ramankutty C, Sugunan S. Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl Catal Gen 2001;218:39e51. https://doi.org/10.1016/S0926-860X(01)00610-X.

[8] Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S. Catalysis of Nickel Ferrite for Photocatalytic Water Oxidation Using [Ru(bpy) 3 ] 2þ and S 2 O 8 2. J Am Chem Soc 2012; 134:19572e5. https://doi.org/10.1021/ja309771h.

[9] Xiao Y, Zai J, Tian B, Qian X. Formation of NiFe2O4/ Expanded Graphite Nanocomposites with Superior Lithium Storage Properties. Nano-Micro Lett 2017;9:34. https://doi. org/10.1007/s40820-017-0127-7.

[10] Zhang L, Jiao W. The effect of microstructure on the gas properties of NiFe2O4 sensors: Nanotube and nanoparticle. Sensor Actuator B Chem 2015;216:293e7. https://doi.org/10. 1016/j.snb.2015.04.049.

[11] Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G. Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Compd 2016;654: 460e6. https://doi.org/10.1016/j.jallcom.2015.09.119.

[12] He J-Z, Wang X-X, Zhang Y-L, Cao M-S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J Mater Chem C 2016;4:7130e40. https://doi.org/10.1039/C6TC02020H.

[13] Biswas S, Kar GP, Bose S. Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. J Mater Chem A 2015;3:12413e26. https://doi.org/10.1039/C5TA0 2177D.

[14] Madhu BJ, Ashwini ST, Shruthi B, Divyashree BS, Manjunath A, Jayanna HS. Structural, dielectric and electromagnetic shielding properties of NieCu nanoferrite/PVP composites. Mater Sci Eng, B 2014;186:1e6. https://doi.org/ 10.1016/j.mseb.2014.02.018.

[15] Sun J, Ma F. Improved shielding and filtering applied to immunity enhancement of underground gas sensors. J China Univ Mining Technol 2008;18:220e3. https://doi.org/10.1016/ S1006-1266(08)60046-2.

[16] Wang Z, Du Y, Liu Y, Zou B, Xiao J, Ma J. Degradation of organic pollutants by NiFe 2 O 4 /peroxymonosulfate: efficiency, influential factors and catalytic mechanism. RSC Adv 2016;6:11040e8. https://doi.org/10.1039/C5RA21117D.

[17] Zhao H, Dong Y, Wang G, Jiang P, Zhang J, Wu L, Li K. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chem Eng J 2013;219:295e302. https:// doi.org/10.1016/j.cej.2013.01.019.

[18] Xu S, Shangguan W, Yuan J, Chen M, Shi J, Jiang Z. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure. Nanotechnology 2008;19:095606. https://doi.org/10. 1088/0957-4484/19/9/095606.

[19] Xu S, Shangguan W, Yuan J, Chen M, Shi J. Preparations and photocatalytic properties of magnetically separable nitrogendoped TiO2 supported on nickel ferrite. Appl Catal B Environ 2007;71:177e84. https://doi.org/10.1016/j.apcatb.2006.09.004.

[20] Singh J, Roychoudhury A, Srivastava M, Chaudhary V, Prasanna R, Lee DW, Lee SH, Malhotra BD. Highly Efficient Bienzyme Functionalized Biocompatible Nanostructured Nickel FerriteeChitosan Nanocomposite Platform for Biomedical Application. J Phys Chem C 2013;117:8491e502. https://doi.org/10.1021/jp312698g.

[21] Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 2014;292:2025e52. https://doi.org/10.1007/s00396-014-3357-y.

[22] Sanpo N, Berndt CC, Wen C, Wang J. Transition metalsubstituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 2013;9:5830e7. https://doi.org/10. 1016/j.actbio.2012.10.037.

[23] Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC7 cancer cells. Chemosphere 2015;135:278e88. https://doi. org/10.1016/j.chemosphere.2015.03.079.

[24] Doust Mohammadi M, Abdullah HY. Non-covalent interactions of cysteine onto C60, C59Si, and C59Ge: a DFT study. J Mol Model 2021;27:330. https://doi.org/10.1007/ s00894-021-04960-5.

[25] Doust Mohammadi M, Abdullah HY. The adsorption of bromochlorodifluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Struct Chem 2021;32:481e94. https://doi.org/10.1007/s11224020-01646-1.

[26] Doust Mohammadi M, Abdullah HY. The Adsorption of Chlorofluoromethane on Pristine, Al-, Ga-, P-, and As-doped Boron Nitride Nanotubes: A PBC-DFT, NBO, and QTAIM Study. ChemistrySelect 2020;5:12115e24. https://doi.org/10. 1002/slct.202003367.

[27] Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K. Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin Solid Films 2002;407: 109e13. https://doi.org/10.1016/S0040-6090(02)00021-4.

[28] Brook RJ, Kingery WD. Nickel Ferrite Thin Films: Microstructures and Magnetic Properties. J Appl Phys 1967;38: 3589e94. https://doi.org/10.1063/1.1710177.

[29] Jacob J, Khadar MA. Investigation of mixed spinel structure of nanostructured nickel ferrite. J Appl Phys 2010;107. https://doi.org/10.1063/1.3429202.

[30] de Paiva JAC, Graça MPF, Monteiro J, Macedo MA, Valente MA. Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J Alloys Compd 2009; 485:637e41. https://doi.org/10.1016/j.jallcom.2009.06.052.

[31] Zekic E, Vukovic Z, Halkijevic I. Application of nanotechnology in wastewater treatment. Journal of the Croatian Association of Civil Engineers 2018;70:315e23. https://doi. org/10.14256/JCE.2165.2017.

[32] Abdelbasir SM, Shalan AE. An overview of nanomaterials for industrial wastewater treatment. Kor J Chem Eng 2019;36: 1209e25. https://doi.org/10.1007/s11814-019-0306-y.

[33] Masood MH, Haleem N, Shakeel I, Jamal Y. Carbon dioxide conversion into the reaction intermediate sodium formate for the synthesis of formic acid. Res Chem Intermed 2020;46: 5165e80. https:/

[34] Hu J, Lo I, Chen G. Comparative study of various magnetic nanoparticles for Cr(VI) removal. Separ Purif Technol 2007; 56:249e56. https://doi.org/10.1016/j.seppur.2007.02.009.

[35] Moradmard H, Shayesteh SF. The Variation of Magnetic Properties of Nickel Ferrite by Annealing. Manufac Sci Technol 2015;3:141e5. https://doi.org/10.13189/mst.2015. 030411.

[36] Phul R, Khan MAM, Sardar M, Ahmed J, Ahmad T. Multifunctional Electrochemical Properties of Synthesized NonPrecious Iron Oxide Nanostructures. Crystals 2020;10:751. https://doi.org/10.3390/cryst10090751.

[37] Giraldo L, Erto A, Moreno-Pirajan JC. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 2013;19: 465e74. https://doi.org/10.1007/s10450-012-9468-1.

[38] Sagadevan S, Chowdhury ZZ, Rafique RF. Preparation and Characterization of Nickel ferrite Nanoparticles via Co-precipitation Method. Mater Res 2018;21. https://doi.org/10. 1590/1980-5373-mr-2016-0533.

[39] Prasad S, Gajbhiye N. Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J Alloys Compd 1998;265:87e92. https://doi.org/10. 1016/S0925-8388(97)00431-3.

[40] Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Mohamed Kamari H, Kanagesan S. Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying. Materials Science-Poland 2014;32:281e91. https://doi.org/10.2478/ s13536-013-0173-x.

[41] Majid F, Rauf J, Ata S, Bibi I, Malik A, Ibrahim SM, Ali A, Iqbal M. Synthesis and characterization of NiFe2O4 ferrite: Solegel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics. Mater Chem Phys 2021;258:123888. emphys.2020.123888. https://doi.org/10.1016/j.match.

[42] Amulya MAS, Nagaswarupa HP, Kumar MRA, Ravikumar CR, Prashantha SC, Kusuma KB. Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Applied Surface Science Advances 2020;1:100023. https://doi. org/10.1016/j.apsadv.2020.100023.

[43] Kale A, Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J Magn Magn Mater 2004;277:350e8. https://doi.org/10.1016/j.jmmm.2003.11.015.

[44] Lee PY, Ishizaka K, Suematsu H, Jiang W, Yatsui K. Magnetic and Gas Sensing Property of Nanosized NiFe2O4 Powders Synthesized by Pulsed Wire Discharge. J Nanoparticle Res 2006;8:29e35. https://doi.org/10.1007/s11051-005-5427-z.

[45] Mohammadi MD, Abdullah HY, Biskos G, Bhowmick S. Enhancing the absorption of 1-chloro-1,2,2,2-tetrafluoroethane on carbon nanotubes: an ab initio study. Bull Mater Sci 2021;44:198. https://doi.org/10.1007/s12034-021-02472-9.

[46] Doust Mohammadi M, Abdullah HY. Adsorption of 1chloro-1,2,2,2-tetrafluoroethane on pristine, Al, Ga-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Can J Chem 2021;99:51e62. https:// doi.org/10.1139/cjc-2020-0309.

[47] Mohammadi MD, Salih IH, Abdullah HY. An Ultimate Investigation on the Adsorption of Amantadine on Pristine and Decorated Fullerenes C59X(X¼Si, Ge, B,Al, Ga,N,P,andAs): ADFT,NBO,andQTAIMStudy.JComputBiophyChem2021; 20:23e39. https://doi.org/10.1142/S2737416521500022.

[48] Doust Mohammadi M, Abdullah HY, Kalamse V, Chaudhari A. Interaction of Fluorouracil drug with boron nitride nanotube, Al doped boron nitride nanotube and BC2N nanotube. Comput Theoretic Chem 2022;1212:113699. https://doi.org/10.1016/j.comptc.2022.113699.

[49] Mohammadi MD, Salih IH, Abdullah HY. The adsorption of chlorofluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Mol Simulat 2020;46:1405e16. https://doi.org/10.1080/08927022. 2020.1834103.

[50] Mohammadi MD,Abdullah HY. DFTStudyfor Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC 2 NNT(5,5), and BC 2 NNT(7,0). J Comput Biophy Chem2021; 20:765e83. https://doi.org/10.1142/S2737416521500472.

[51] Doust Mohammadi M, Abdullah HY. Intermolecular Interactions between Serine and C60, C59Si, and C59Ge: a DFT Study. Silicon 2022;14:6075e88. https://doi.org/10.1007/ s12633-021-01408-6.

[52] Frisch MJ, et al. Gaussian 09, revision A.02, vol. 1. Wallingford: Gaussian, F Inc; 2009. p. 1e44.

[53] O’boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J Comput Chem 2008;29:839e45. https://doi.org/10. 1002/jcc.20823.

[54] Sridharan K, Agarwal M, Philip J, Endo T, Philip R. Optical Nonlinearity in NiFe2O4 Nanoparticles. Trans Mater Res Soci Japan 2010;35:159e62. https://doi.org/10.14723/tmrsj.35.159.

[55] Govindarajan M, Karabacak M. Spectroscopic properties, NLO, HOMOeLUMO and NBO analysis of 2,5-Lutidine. Spectrochim Acta Mol Biomol Spectrosc 2012;96:421e35. https://doi.org/10.1016/j.saa.2012.05.067.

[56] Ramalingam S, Karabacak M, Periandy S, Puviarasan N, Tanuja D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochim Acta Mol Biomol Spectrosc 2012;96:207e20. https:// doi.org/10.1016/j.saa.2012.03.090.

[57] Ramalingam S, Periandy S, Govindarajan M, Mohan S. FTIR and FTRaman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene. Spectrochim Acta Mol Biomol Spectrosc 2010;75:1308e14. https://doi.org/10.1016/j.saa.2009. 12.072.

[58] Alkalah C. The oxford handbook of nanoscience and technology: materials: structures, properties and characterization techniques. 2016.

[59] Agarwal S, Jangir LK, Rathore KS, Kumar M, Awasthi K. Morphology-dependent structural and optical properties of ZnO nanostructures. Appl Phys A 2019;125:553. https://doi. org/10.1007/s00339-019-2852-x.

[60] Monat JE, Rodriguez JH, McCusker JK. Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4‘-dicarboxylato-2,2‘-bipyridine)bis(isothiocyanato)ruthenium(II). J Phys Chem 2002;106:7399e406. https:// doi.org/10.1021/jp020927g.

[61] Reddy RR, Nazeer Ahammed Y. A study on the Moss relation. Infrared Phys Technol 1995;36:825e30. https://doi.org/ 10.1016/1350-4495(95)00008-M.

[62] Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z. Neurotoxicity induced by zinc oxide nanoparticles: agerelated differences and interaction. Sci Rep 2015;5:16117. https://doi.org/10.1038/srep16117.

[63] Wang J, Deng X, Zhang F, Chen D, Ding W. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Res Lett 2014;9:117. https://doi.org/10.1186/1556276X-9-117.

[64] Arakha M, Saleem M, Mallick BC, Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle.SciRep2015;5:9578.https://doi.org/10.1038/srep09578.

[65] Boufas W, Dupont N, Berredjem M, Berrezag K, Becheker I, Berredjem H, Aouf N-E. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J Mol Struct 2014; 1074:180e5. https://doi.org/10.1016/j.molstruc.2014.05.066.

[66] Mubarik A, Rasool N, Hashmi MA, Mansha A, Zubair M, Shaik MR, Sharaf MAF, Awwad EM, Abdelgawad A. Computational Study of Structural, Molecular Orbitals, Optical and Thermodynamic Parameters of Thiophene Sulfonamide Derivatives. Crystals 2021;11:211. https://doi.org/10. 3390/cryst11020211.

[67] Mahmood Abdelghani G, Basim Al-Zubaidi A, Ben Ahmed A. Synthesis, characterization, and study of the inf luence of energy of irradiation on physical properties and biologic activity of nickel ferrite nanostructures. J Saudi Chem Soc 2023;27:101623. https://doi.org/10.1016/j.jscs.2023. 101623.

[68] Ben Ahmed A, Feki H, Abid Y, Boughzala H, Minot C, Mlayah A. Crystal structure, vibrational spectra and theoretical studies of l-histidinium dihydrogen phosphate-phosphoric acid. J Mol Struct 2009;920:1e7. https://doi.org/10. 1016/j.molstruc.2008.09.029.

[69] Ben AhmedA, Feki H, Abid Y, Minot C. Molecular structure, vibrational spectra and nonlinear optical properties of orthoarsenic acidetris-(hydroxymethyl)-aminomethane DFT study. Spectrochim Acta Mol Biomol Spectrosc 2010;75: 1315e20. https://doi.org/10.1016/j.saa.2009.12.073.

[70] Ben Ahmed A, Benhaliliba M, Ocak YS, Ayeshamariam A, Benouis CE. Photovoltaic parameters and computational spectroscopic investigation of third order nonlinear optical of CuPc/Si organic diode. Opt Mater 2022;126:112071. https:// doi.org/10.1016/j.optmat.2022.112071.

[71] Benhaliliba M, Ben Ahmed A. The phthalocyanine bluegreen pigments devices intended for optical filters. Optik 2022;258:168808. https://doi.org/10.1016/j.ijleo.2022. 168808.

[72] Nadafan M, Parishani M, Dehghani Z, Anvari JZ, Malekfar R. Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique. Optik 2017;144:672e8. https:// doi.org/10.1016/j.ijleo.2017.06.128.

Share

COinS