•  
  •  
 

Document Type

Original Article

Abstract

The synthesis of silver nanoparticles (AgNPs) using bay leaf extract (Syzygium polyanthum) and their testing against bacteria aims to evaluate the antibacterial effectiveness on two types of bacteria, namely Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The synthesis method used is environmentally friendly, with bay leaves serving as a reducing agent. The synthesis process was carried out by mixing silver nitrate (AgNO₃) solution with bay leaf extract at concentrations of 2 mM and 3 mM in a ratio of 1:30 and 1:40 between AgNO₃ and bay leaf extract. The use of bay leaf extract to create silver nanoparticles (AgNPs) was verified by a yellowish-brown color shift. UV-Vis spectrophotometry revealed that the absorbance was highest between 435 and 442 nm. Increased absorbance on day 7 compared to day 1 indicated better nanoparticle production and stability throughout time. At doses of 3 mM AgNO₃, antibacterial activity tests revealed greater inhibition zones; E. coli showed 12.7 ± 0.4 mm and S. aureus showed 15.4 ± 0.6 mm. Inhibition zones at two mM were 9.3 ± 0.3 mm for E. coli and 11.2 ± 0.5 mm for S. aureus. These findings demonstrate the potential of bay leaf extract as an environmentally acceptable ingredient for nanoparticle production and antibacterial applications by confirming the increased susceptibility of S. aureus to AgNPs. The antibacterial test using the disk diffusion method showed that silver nanoparticles have a significant inhibitory effect on the growth of both bacteria. A larger inhibition zone is formed at a concentration of AgNO₃ of 3 mM, with S. aureus being more sensitive to changes in concentration compared to E. coli. This result shows the potential of bay leaf extract as a natural and environmentally friendly antibacterial agent

Receive Date

09/11/2024

Revise Date

17/12/2024

Accept Date

29/12/2024

References

[1] Suwito W, Winarti E, Kristiyanti F, Widyastuti A, Andriani A. Faktor Risiko terhadap Total Bakteri, Staphylococcus aureus, Koliform, dan E. coli pada Susu Kambing. Agritech 2018; 38(1):39e44. https://doi.org/10.22146/agritech.23252.

[2] Pormohammad A, Nasiri MJ, Azimi T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 2019:1181e97. https://doi.org/10.2147/IDR.S201324.

[3] Hasbrianti AR, Herdwiani W. Antibacterial and antibiofilm activity related to the mechanism of work of the active fraction of moringa leaves (Guilandina Moringa L.) to Staphylococcus aureus. Jurnal Multidisiplin Madani 2024;4(8): 1286e306. https://doi.org/10.55927/mudima.v4i8.11134.

[4] Parmitha NY. Synthesis of silver nanoparticles using layer leaf extract (Syzygium Polyanthum) as a bioreductor and testing its activity as an antioxidant. Doctoral dissertation. Universitas Hasanuddin; 2018. https://doi.org/10.30598/ijcr. 2019.7-ptb.

[5] Erlyn P, Irfannuddin I, Murti K, Lesbani A. The potential of shell extract as a hemostasis and wound healing agent: a literature review. Jurnal Kedokteran Brawijaya 2024:31e9. https://doi.org/10.21776/ub.jkb.2023.033.01.6.

[6] Yaqubi AK, Astuti SD, Zaidan AH, Nurdin DZI. Blue laseractivated silver nanoparticles from grape seed extract for photodynamic antimicrobial therapy against Escherichia coli and Staphylococcus aureus. J Laser Med Sci 2023;14. https:// doi.org/10.34172/jlms.2023.69.

[7] Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Anal Lett 2017;50(1):50e62. https://doi.org/10.1080/00032719.2016.1172081.

[8] Warnida H, Sukawaty Y. Efektivitas ekstrak etanol daun salam (Syzygium polyanthum (Wight) Walp.) sebagai pengawet alami antimikroba. Jurnal Ilmiah Ibnu Sina 2016;1(2): 227e34. https://doi.org/10.36387/jiis.v1i2.53.

[9] Hakim RF, Fakhrurrazi F, Ferisa W. The effect of boiled water from bay leaves (Eugenia polyantha wight) on the growth of Enterococcus faecalis. J Syiah Kuala Dent Soc 2016; 1(1):21e8. https://doi.org/10.36387/jiis.v1i2.53.

[10] Jannah AM, Aznam N. The formulation and evaluation of anti-aging tamarind leaf (Tamarindus indica L.) extract cream. Indo J Chem Env 2022;5(2):68e78. https://doi.org/10. 21831/ijoce.v5i2.58395.

[11] Widjajakusuma EC, Jonosewojo A, Hendriati L, Wijaya S, Surjadhana A, Sastrowardoyo W, et al. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine 2019;55:137e47. https://doi.org/10.1016/j.phymed. 2018.07.002.

[12] Widyawati T, Adlin Yusoff N, Asmawi MZ, Ahmad M. Antihyperglycemic effect of methanol extract of Syzygium polyanthum (Wight.) leaf in streptozotocin-induced diabetic rats. Nutrients 2015;7(9):7764e80. https://doi.org/10.3390/ nu7095365.

[13] Aziz Peshawa Y, HamaAmin Hassan H, Azeez Shokhan H. Evaluation of antibacterial and antifungal activity of Pistacia atlantica subsp. kurdica oil gum extract from Halabja Province/Kurdistan Region of Iraq. Polytechnic J 2022;12(1):20. https://doi.org/10.25156/ptj.v12n1y2022.pp166-170.

[14] Astuti SD, Sulistyo A, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, et al. An in-vivo study of photobiomodulation using 403 nm and 649 nm diode lasers for molar tooth extraction wound healing in wistar rats. Odontology 2022;1e14. https://doi.org/10.1007/s10266-021- 00653-w.

[15] Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci 2021; 22(7):3380. https://doi.org/10.3390/ijms22073380.

[16] Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon 2019;5(4):e01485. https://doi.org/10.1016/j.heliyon.2019.e01485.

[17] Ghiasi F, Hashemi H, Esteghlal S, Hosseini SMH. An updated comprehensive overview of different food applications of W1/O/W2 and O1/W/O2 double emulsions. Foods 2024;13(3):485. https://doi.org/10.3390/foods13030485.

[18] Othman Sara I, Kamel Fouad H. In vitro antibacterial activity of mentha spicataessential oil against some pathogenic bacteria. Polytechnic J 2021;11(1):3. https://doi.org/10.25156/ptj. v11n1y2021.pp13-15.

[19] Khairani U, Harlita TD, Aina GQ. Antibacterial effectiveness of a combination of Anredera cordifolia (Ten.) steenis and strobilanthes crispus blume extract on inhibition of the growth of Streptococcus sp. causes of diabetic ulcers. Trop Health Med Res 2024;6(2):1e10. https://doi.org/10.35916/ thmr.v6i2.117.

[20] Astuti SD, Mahmud AF, Putra AP, Setiawatie EM, Arifianto D. Effectiveness of bacterial biofilms photodynamic inactivation mediated by curcumin extract, nanodoxycycline and laser diode. Biomed Photonics 2020;9(4):4e14. https:// doi.org/10.24931/2413e9432e2020-9e4e4e14.

[21] Otero J, Starinieri V, Charola AE. Nanolime for the consolidation of lime mortars: A comparison of three available products. Construct Build Mater 2018;181:394e407. https:// doi.org/10.1016/j.conbuildmat.2018.06.055.

[22] Rozykulyyeva L, Astuti SD, Zaidan AH, Pradhana AAS, Puspita PS. Antibacterial activities of green synthesized silver nanoparticles from Punica granatum peel extract. AIP Conf Proc 2020, December;2314(1). https://doi.org/10.1063/5. 0034126. AIP Publishing.

[23] Mardianto AI, Setiawatie EM, Lestari WP, Rasheed A, Astuti SD. Photodynamic inactivation of Streptococcus mutan bacteri with photosensitizer Moringa oleifera activated by light emitting diode (LED). J Phys Conf 2020, March;1505(1):012061. https://doi.org/10.1088/1742-6596/ 1505/1/012061. IOP Publishing.

[24] Hamad Hero O, Abdullah Venos S, Kamel Fouad H, Hassan Nawroz I. Comparative study of He e Ne and green lasers effect on normal human blood in vitro using FTIR techniques. Polytechnic Journal 2022;12(1):11. https://doi. org/10.25156/ptj.v12n1y2022.pp89-97.

[25] Astuti SD, Zaidan A, Setiawati EM, Suhariningsih S. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans. AIP Conf Proc 2016, March;1718(1). https://doi.org/10.1063/1.4943353. AIP Publishing.

[26] Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Ind J Sci Technol 2019;4(1):97e118. https://doi.org/10.17509/ijost.v4i1. xxxx.

[27] Harish V, Ansari MM, Tewari D, Yadav AB, Sharma N, Bawarig S, et al. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J Taiwan Inst Chem Eng 2023;149: 105010. https://doi.org/10.1016/j.jtice.2023.105010.

[28] Giyatmi G, Irianto HE, Nuraelah A. Exploring the potential of the mixture of alginate and aqueous plant extracts as functional drinks for diabetics. Res J Pharm Technol 2024; 17(8):3936e44. https://doi.org/10.52711/0974-360X.2024. 00611.

[29] Nasution AN. Enhance effectiveness of Moringa leaves with staphylococcus epidermidis bacteria. Bp Int Res Critic Inst J 2021;4(2):1705e12. https://doi.org/10.33258/birci.v4i2.1843.

[30] Yonatan Y, Astuti SD, Ain K, Arifianto D, Yaqubi AK, Permatasari PAD. Development of a magnetic LED-based sterilisator for inactivation of contaminant bacteria. Polytechnic J 2024;14(2):6. https://doi.org/10.59341/2707-7799. 1839.

[31] Prsakoeswa S, Rosita C, Purwanto DA, Endaryanto A. Molecular docking, pharmacokinetics, and toxicity prediction of epigallocatechin-3-gallate (EGCG) on IKK receptor in photoaging prevention. Indian J Forensic Med Toxicol 2020;14(2). https://doi.org/10.37506/ijfmt.v14i2.3131.

[32] Astuti SD, Utomo IB, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, et al. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis. BMC Oral Health 2021; 21(1):1e15. https://doi.org/10.1186/s12903-021-01435-0.

[33] Yaqubi AK, Astuti SD, Zaidan AH, Syahrom A, Nurdin DZI. Antibacterial effect of red laser-activated silver nanoparticles synthesized with grape seed extract against Staphylococcus aureus and Escherichia coli. Laser Med Sci 2024;39(1):1e13. https://doi.org/10.1007/s10103-024-03991-7.

[34] Dewijanti ID, Mangunwardoyo W, Dwianti A, Hanafi M, Artanti N, Mozef T, et al. Antimicrobial activity of bay leaf (Syzygium polyanthum (wight) walp) extracted using various solvent. AIP Conf Proc 2019, November;2175(1). https://doi. org/10.1063/1.5134585. AIP Publishing.

[35] Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019;184:110550. https://doi.org/10.1016/j.colsurfb.2019.110550.

Share

COinS