•  
  •  
 

Document Type

Original Article

Abstract

Dietary factors play a crucial role in modulating immune responses, including inflammatory processes. This study investigates the expression of the hematopoietic cell kinase (HCK) gene in Wistar rats fed exclusively with two novel cowpea cultivars, SAMPEA-11 and SAMPEA 20T, to evaluate their potential immunomodulatory effects. The experiment employed a randomized controlled design with six Wistar rats divided into three groups: SAMPEA-11, SAMPEA 20T, and a control group fed a standard diet. Gene expression analysis was performed using real-time quantitative PCR (qPCR), with GAPDH serving as the reference gene for normalization. The results demonstrated significant upregulation of HCK gene expression in rats fed with SAMPEA-11 and SAMPEA 20T compared to the control group. SAMPEA-11 exhibited the highest expression fold change (38.6394), followed by SAMPEA 20T (3.7542), indicating a strong activation of HCK expression. The ΔΔCt values further confirmed this trend, showing the greatest upregulation in SAMPEA-11 (-5.272) and a moderate increase in SAMPEA 20T (-1.9085). Statistical analysis revealed a strong inverse correlation between ΔΔCt and expression fold change (r = -0.955, p = 0.191), aligning with expected qPCR trends. Also, regression analysis indicated that ΔΔCt was a strong predictor of expression levels (R² = 0.913). These findings suggest that the consumption of SAMPEA-11 and SAMPEA 20T influences immune-related gene expression, potentially impacting immune cell signaling and inflammatory responses. The observed variations between the two cowpea cultivars highlight the need for further investigation into their bioactive components and mechanistic pathways underlying HCK gene regulation. This study contributes to the growing body of knowledge on the dietary modulation of immune function and underscores the potential health benefits of SAMPEA-11 and SAMPEA 20T in immune regulation..

Receive Date

23/02/2025

Revise Date

09/05/2025

Accept Date

23/05/2025

Publication Date

6-27-2025

References

[1] Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015;36(Suppl 1): S232e53. https://doi.org/10.1093/carcin/bgv038.

[2] Saeed F, Nadeem M, Ahmed RS, Tahir Nadeem M, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compoundsea review. Food Agric Immunol 2016;27(2):205e29. https://doi.org/10.1080/09540105. 2015.1079600.

[3] Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: the bioactive compounds and immunomodulating potential. J Food Biochem 2022;46(11):e14331. https://doi.org/10.1111/ jfbc.14331.

[4] Ibrahim SR, El-Halawany AM, El-Dine RS, Mohamed GA, Abdallah HM. Middle Eastern diets as a potential source of immunomodulators. In: Plants and phytomolecules for immunomodulation: recent trends and advances. Singapore: Springer Nature Singapore; 2022. p. 163e90. https://doi.org/ 10.3389/fimmu.2021.637553.

[5] Pahwa H, Sharan K. Food and nutrition as modifiers of the immune system: a mechanistic overview. Trends Food Sci Technol 2022;123:393e403. http://ir.cftri.res.in/id/eprint/ 15756.

[6] Yusuf O, Williams N, Abubakar UZ. Measurement of technical efficiency and its determinants in SAMPEA-11 variety of cowpea production in Niger State, Nigeria. 2015.

[7] Phillip D, Nin-Pratt A, Zambrano P, Wood-Sichra U, Edward K, Komen J, et al. Insect-resistant cowpea in Nigeria. An Ex-Ante Econ Assess Crop Improv Initiat; 2019.

[8] Narayana M, Angamuthu M. Cowpea. In: The beans and the peas. Woodhead Publishing; 2021. p. 241e72.

[9] Utono I, Isa J, Salisu A, Musa N. The response of cowpea bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae), to some cowpea varieties under short-and long-term storage conditions. Niger Ann Pure Appl Sci 2023;6(1).

[10] Nwagboso C, Andam KS, Amare M, Bamiwuye T, Fasoranti A. The economic importance of cowpea in Nigeria. 2024.

[11] Titus SD, Ishaya SG, Emmanuel A, Bariya CE, Bulus ED, Gurama SB, et al. Assessment of mineral and vitamin constituents of SAMPEA-11 and SAMPEA 20T cowpea cultivars. Mikaila Lsys: J Multidiscip Sci 2025;3(1):81e7. https:// doi.org/10.58578/mikailalsys.v3i1.4365.

[12] Titus SD, Abershi AL, Francis A, Mafe AN, Samuel KB, Daniel EO, et al. Effect of processing on nutritional and antinutritional composition of SAMPEA-11 and 20-T cowpea cultivars. Mikaila Lsys J Multidiscip Sci 2024;2(3):479e89. https://doi.org/10.58578/mikailalsys.v2i3.3867.

[13] Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res 2020;13: 1057e73. https://doi.org/10.2147/JIR.S275595.

[14] Mehta M, Dhanjal DS, Paudel KR, Singh B, Gupta G, Rajeshkumar S, et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020;28:795e817. https://doi.org/10.1007/s10787-020-00698-3.

[15] Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci 2022;23(13):7273. https://doi.org/ 10.3390/ijms23137273.

[16] Bagnato G, Leopizzi M, Urciuoli E, Peruzzi B. Nuclear functions of the tyrosine kinase Src. Int J Mol Sci 2020;21(8): 2675. https://doi.org/10.3390/ijms21082675.

[17] Voisset E, Brenet F, Lopez S, de Sepulveda P. SRCfamily kinases in acute myeloid leukaemia and mastocytosis. Cancers 2020;12(7):1996. https://doi.org/10.3390/cancers 12071996.

[18] Zeng Q, He J, Chen X, Yuan Q, Yin L, Liang Y, et al. Recent advances in hematopoietic cell kinase in cancer progression: mechanisms and inhibitors. Biomed Pharmacother 2024;176:116932. https://doi.org/10.1016/j.biopha.2024. 116932.

[19] Futosi K, Nemeth T, Horvath AI, Abram CL, Tusn ady S, Lowell CA, et al. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023;220(7):e20221010. https:// doi.org/10.1084/jem.20221010.

[20] Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021;131:121e6. https://doi.org/10.1016/j.molimm. 2020.12.028.

[21] Li H, Huang SE, Geng CL, Wu YX, Shi MH, Wang M. Comprehensive analysis reveals hub genes associated with immune cell infiltration in allergic rhinitis. World J Otorhinolaryngol Head Neck Surg 2023;9(4):340e51. https:// doi.org/10.1002/wjo2.92.

[22] Luo S, Du S, Tao M, Cao J, Cheng P. Insights on hematopoietic cell kinase: an oncogenic player in human cancer. Biomed Pharmacother 2023;160:114339. https://doi.org/ 10.1016/j.biopha.2023.114339.

[23] Devalloir Q. Effects of multi-stressors (pollution, nutritional quality) on the immunocompetence of the wood mouse (Doctoral thesis, LCE - Laboratoire Chrono-environnement, UMR 6249). HAL 2023. https://hal.science/tel-04598579.

[24] Hussein S, Ben Bacha A, Alonazi M, Alwaili MA, Mobasher MA, Alburae NA, et al. Urtica pilulifera leaves extract mitigates cadmium-induced hepatotoxicity via modulation of antioxidants, inflammatory markers, and Nrf-2 signaling in mice. Front Mol Biosci 2024;11:1365440. https:// doi.org/10.3389/fmolb.2024.1365440.

[25] Ichimiya T, Okamatsu M, Kinoshita T, Kobayashi D, Ichii O, Yamamoto N, et al. Sulfated glycans containing NeuAca2- 3Gal facilitate the propagation of human H1N1 influenza A viruses in eggs. Virology (New York, N Y) 2021;562:29e39. https://doi.org/10.1016/j.virol.2021.06.008.

[26] Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J Am Heart Assoc 2016;5(8):e003911. https://doi.org/10.1161/ JAHA.116.003911.

[27] Bhattacharjee A, Pal S, Feldman GM, Cathcart MK. Hck is a key regulator of gene expression in alternatively activated human monocytes. J Biol Chem 2011;286(42):36709e23. https://doi.org/10.1074/jbc.M111.291492.

[28] Zhang X, Mahmudi-Azer S, Connett JE, Anthonisen NR, He JQ, Pare PD, et al. Association of Hck genetic polymorphisms with gene expression and COPD. Hum Genet 2007;120:681e90. https://doi.org/10.1007/s00439-006- 0253-7.

[29] Yang G, Buhrlage SJ, Tan L, Liu X, Chen J, Xu L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood 2016;127(25):3237e52. https://doi.org/10.1182/blood-2016-01-695098.

[30] Ojwang LO, Banerjee N, Noratto GD, Angel-Morales G, Hachibamba T, Awika JM, et al. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)- induced inflammationemodulation of microRNA 126. Food Funct 2015;6(1):145e53. https://doi.org/10.1039/ C4FO00459K.

[31] Adjei-Fremah S, Asiamah EK, Ekwemalor K, Jackai L, Schimmel K, Worku M. Modulation of bovine Wnt signaling pathway genes by cowpea phenolic extract. J Agric Sci 2016; 8(3):21. https://doi.org/10.5539/jas.v8n3p21.

[32] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2009;15(13):4042e9. https://doi.org/10.1158/1078-0432.CCR-06-2316.

[33] Adjei-Fremah S, Worku M. Cowpea polyphenol extract regulates galectin gene expression in bovine blood. Anim Biotechnol 2019;32(1):1e12. https://doi.org/10.1080/10495398. 2019.1640234.

[34] Gomes MJC, Martino HSD, Kolba N, Cheng J, Agarwal N, Rocha MdM, et al. Zinc biofortified cowpea (Vigna unguiculata L. Walp.) soluble extracts modulate assessed cecal bacterial populations and gut morphology in vivo (Gallus gallus). Front Biosci (Landmark Ed) 2022;27(5):140. https:// doi.org/10.31083/j.fbl2705140.

[35] Round JL, Mazmanian SK. Inducible Foxp3þ regulatory Tcell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 2010;107(27):12213e8. https:// doi.org/10.1073/pnas.0909122107.

[36] Adjei-Fremah S, Jackai LEN, Schimmel K, Worku M. Microarray analysis of the effect of Cowpea (Vigna unguiculata) phenolic extract in bovine peripheral blood. J Appl Anim Res 2016;46(1):100e6. https://doi.org/10.1080/09712119. 2016.1264305.

Share

COinS