•  
  •  
 

Document Type

Original Article

Abstract

Agriculture, emergency preparedness, and water resource management all depend on accurate rainfall forecasts. This study investigates how well machine learning models predict monthly rainfall in the Kurdistan Region of Iraq, specifically in the Pirmam area. Historical weather data was analyzed using a variety of models, such as Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (ELNET), and Ridge Regression. Statistical measures including Nash-Sutcliffe Efficiency (NSE), Mean Bias Error (MBE), Normalized Root Mean Squared Error (nRMSE), Coefficient of Determination (R2), and Root Mean Squared Error (RMSE) were used to assess the performance of these models. According to the findings, ANN was the best model for predicting monthly rainfall in the Pirmam region, demonstrating exceptional accuracy in identifying intricate patterns and non-linear correlations. ANFIS had trouble with validation but did well with calibration. The top three linear models were LASSO, Ridge, MLR, and EN. This study demonstrates how machine learning approaches can improve the accuracy of rainfall forecasts, which can help with regional decision-making on water resource management and climate adaptation plans.

Receive Date

12/02/2025

Revise Date

02/08/2025

Accept Date

15/08/2025

Publication Date

10-15-2025

References

[1] Kõlõc Z. The importance of water and conscious use of water. Int J Hydrol 2020;4(5):239—41. https://doi.org/ 10.15406/ijh.2020.04.00250.

[2] Akram M, Hamid A. A comprehensive review on water balance. Biomed Prev Nutr 2013;3(2):193—5. https://doi.org/ 10.1016/j.bionut.2012.10.003.

[3] Vieira A, Kleinermanns K, Martin WF, Preiner M. The ambivalent role of water at the origins of life. FEBS Lett 2020; 594(17):2717—33. https://doi.org/10.1002/1873-3468.13815.

[4] Yang TH, Liu WC. A general overview of the risk-reduction strategies for floods and droughts. Sustainability 2020;12(7): 2687. https://doi.org/10.3390/su12072687.

[5] Fereshtehpour M, Sabbaghian RJ, Farrokhi A, Jovein EB, Sarindizaj EE. Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renew Energy 2021;171:1171—87. https:// doi.org/10.1016/j.renene.2020.12.005.

[6] Zhang P, Cao W, Li W. Surface and high-altitude combined rainfall forecasting using convolutional neural network. Peer-to-Peer Network Appl 2021;14:1765—77. https://doi. org/10.1007/s12083-020-00938-x.

[7] Latif SD, Hazrin NAB, Koo CH, Ng JL, Chaplot B, Huang YF, El-Shafie A, Ahmed AN. Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches. Alex Eng J 2023;82:16—25. https://doi.org/10.1016/j.aej.2023.09.060.

[8] Parmar A, Mistree K, Sompura M. Machine learning techniques for rainfall prediction: A review. International conference on innovations in information embedded and communication systems, 3; 2017, March. https://doi.org/ 10.1109/ICIIECS.2017.8276023.

[9] Tinti A. Water resources management in the Kurdistan region of Iraq. IRIS Policy Report 2017.

[10] Voss KA, Famiglietti JS, Lo M, De Linage C, Rodell M, Swenson SC. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 2013;49(2):904—14. https://doi.org/ 10.1002/wrcr.20078.

[11] Al-Ansari NA, Salameh E, Al-Omari I. In: Analysis of rainfall in the badia region, 1. Jordan: Al al-Bayt University Research paper; 1999. p. 66.

[12] Chenoweth J, Hadjinicolaou P, Bruggeman A, Lelieveld J, Levin Z, Lange MA, et al. Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour Res 2011;47(6). https://doi.org/10.1029/ 2010WR010269.

[13] Bazzaz F, Roger R, Lydon P. In: Global climatic changes and its consequences for water availability in the Arab World. Water in the Arab Word: perspectives and prognoses, 243. Harvard University; 1993. p. 252.

[14] Mustafa A, Szydłowski M, Veysipanah M, Hameed HM. GIS-based hydrodynamic modeling for urban flood mitigation in fast-growing regions: a case study of Erbil, Kurdistan Region of Iraq. Sci Rep 2023;13(1):8935. https:// doi.org/10.1038/s41598-023-36138-9.

[15] Chandwani V, Vyas SK, Agrawal V, Sharma G. Soft computing approach for rainfall-runoff modelling: a review. Aquatic Procedia 2015;4:1054—61. https://doi.org/10.1016/j. aqpro.2015.02.133.

[16] Latif SD, Ahmed AN. A review of deep learning and machine learning techniques for hydrological inflow forecasting. Environ Dev Sustain 2023. https://doi.org/10.1007/ s10668-023-03131-1.

[17] Shen C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour Res 2018;54(11):8558—93. https://doi.org/ 10.1029/2018WR022643.

[18] Dash Y, Mishra SK, Panigrahi BK. Rainfall prediction for the Kerala state of India using artificial intelligence approaches.Comput Electr Eng 2018;70:66—73. https://doi.org/10.1016/j. compeleceng.2018.06.004.

[19] Xiang Y, Gou L, He L, Xia S, Wang W. A SVR—ANN combined model based on ensemble EMD for rainfall prediction. Appl Soft Comput 2018;73:874—83. https://doi.org/ 10.1016/j.asoc.2018.09.018.

[20] Praveen B, Talukdar S, Shahfahad, Mahato S, Mondal J, Sharma P, et al. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 2020;10:1—21. https://doi.org/ 10.1038/s41598-020-67228-7.

[21] Koppa A, Rains D, Hulsman P, Poyatos R, Miralles DG. A deep learning-based hybrid model of global terrestrial evaporation. Nat Commun 2022;13(1):1912. https://doi.org/ 10.1038/s41467-022-29543-7.

[22] Mohammadi B, Safari MJS, snd Vazifehkhah S. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Sci Rep 2022;12:1—21. https://doi.org/10.1038/s41598-022-16215-1.

[23] Adede C, Oboko R, Wagacha P, Atzberger C. A mixed model approach to drought prediction using artificial neural networks: Case of an operational drought monitoring environment. MDPI Remote Sens 2019;11(9):1099. https:// doi.org/10.3390/rs11091099.

[24] Pham BT, Le LM, Le TT, Bui KTT, Le VM, Ly HB, et al. Development of advanced artificial intelligence models for daily rainfall prediction. Atmos Res 2020;237:104845. https:// doi.org/10.1016/j.atmosres.2020.104845.

[25] Azad A, Farzin S, Sanikhani H, Karami H, Kisi O, Singh VP. Approaches for optimizing the performance of adaptive neuro-fuzzy inference system and least-squares support vector machine in precipitation modeling. J Hydrol Eng 2021;26(4):04021010. https://doi.org/10.1061/(ASCE)HE.1943- 5584.0002069.

[26] Rahnama MR, Abkooh SS. Prediction of CO pollutant in Mashhad metropolis, Iran: Using multiple linear regression. Geogr J 2023;189(4):715—28. https://doi.org/10.1111/geoj.12534.

[27] Gao L, Schulz K, Bernhardt M. Statistical downscaling of ERA-interim forecast precipitation data in complex terrain using lasso algorithm. Adv Meteorol 2014. https://doi.org/ 10.1155/2014/472741. Article ID 472741.

[28] Feng Y, Wu D. Application of ridge regression in forecasting integration. Meteorology11 1985:2—4. https://doi.org/ 10.7519/j.issn.1000-0526.1985.11.001.

[29] Ji M, Cheng L. Application of ridge regression algorithm in ensemble prediction of ozone concentration. J Anhui Univ (Nat Sci Edition) 2018;42(4):93—102. https://doi.org/10.3969/j. issn.1000-2162.2018.04.016.

[30] Chen B, Chen Z, Song C, Song Y. Integrated forecasting method of medium-and long-term runoff by ridge regression based on optimal sub-model selection. Water Supply 2024;24(3):799—811. https://doi.org/10.2166/ ws.2024.033.

[31] Liu W, Li Q. An efficient elastic net with regression coefficients method for variable selection of spectrum data. PLoS One 2017;12(2):e0171122. https://doi.org/10.1371/journal.pone.0171122.

[32] Jirjees S, Seeyan S, Fatah K. Climatic analysis for Pirmam area, Kurdistan Region, Iraq. Iraqi Geol J 2020:75—92. https://doi.org/10.46717/igj.53.1E.6Ry-2020-07/06.

[33] Buday T, Aqif A, Sattran V, Tyrack J. The regional geology of Iraq, 2. Baghdad: GEOSURV Lib.; 1973.

[34] Buday T, Jassim SZ. The regional geology of Iraq (Stratigraphy and paleogeography). 1987.

[35] Mustafa AM, Muhammed H, Szydłowski M. Extreme rainfalls as a cause of urban flash floods; a case study of the Erbil-Kurdistan region of Iraq. Acta Scientiarum Polonorum Formatio Circumiectus 2019;18:113—32. https://doi.org/ 10.15576/ASP.FC/2019.18.3.113.

[36] Kushwaha NL, Kudnar NS, Vishwakarma DK, Subeesh A, Jatav MS, Gaddikeri V, et al. Stacked hybridization to enhance the performance of artificial neural networks (ANN) for prediction of water quality index in the Baghriver basin, India. Heliyon 2024;10(10):e31085. https://doi. org/10.1016/j.heliyon.2024.e31085.

[37] Graupe D. Principles of artificial neural networks. World Scientific 2013;7. https://doi.org/10.1142/8868.

[38] Mekanik F, Imteaz M. Capability of artificial neural networks for predicting long-term seasonal rainfalls in east Australia. In: 20th international congress on modelling and simulation (Modsim2013); 2013. p. 2674—80. https://doi.org/ 10.36334/modsim.2013.L1.mekanik.

[39] Latif SD, Azmi MSBN, Ahmed AN, Fai CM, El-Shafie A. Application of artificial neural network for forecasting nitrate concentration as a water quality parameter: a case study of Feitsui Reservoir, Taiwan. Int J Des Nat Ecodyn 2020;15(5):647—52. https://doi.org/10.18280/ijdne.150505.

[40] Ahn J. A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns. Sustainability 2022;14(22): 14710. https://doi.org/10.3390/su142214710.

[41] Yaseen ZM, Ghareb MI, Ebtehaj I, Bonakdari H, Siddique R, Heddam S, et al. Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water Resour Manag 2018;32:105—22. https://doi.org/10.1007/s11269-017- 1797-0.

[42] Adnan RM, Petroselli A, Heddam S, Santos CAG, Kisi O. Short term rainfall-runoff modelling using several machine learning 1Qmethods and a conceptual event-based model. Stoch Environ Res Risk Assess 2021;35(3):597—616. https:// doi.org/10.1007/s00477-020-01910-0.

[43] Sojitra MA, Purohit RC, Pandya PA. Comparative study of daily rainfall forecasting models using adaptive-neuro fuzzy inference system (ANFIS). Curr World Environ 2015;10(2):529.

[44] Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied linear statistical models. 1996. https://doi.org/ 10.12944/CWE.10.2.19.

[45] Luo X, Chang X, Ban X. Regression and classification using extreme learning machine based on L1-norm and L2-norm. Neurocomputing 2016;174:179—86. https://doi.org/10.1016/j. neucom.2015.03.112.

[46] McDonald GC. Ridge regression. Wiley Interdisciplinary Reviews: Comput Stat 2009;1(1):93—100. https://doi.org/ 10.1002/wics.14.

[47] Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc B Stat Methodol 2005;67(2): 301—20. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

[48] Acharki S, Raza A, Vishwakarma DK, Amharref M, Bernoussi AS, Singh SK, et al. Comparative assessment of empirical and hybrid machine learning models for estimating daily reference evapotranspiration in sub-humid and semi-arid climates. Sci Rep 2025;15(1):2542. https://doi. org/10.1038/s41598-024-83859-6.

[49] Murad SH, Salih YMM. Comparable investigation for rainfall forecasting using different data mining approaches in Sulaymaniyah city in Iraq. Int J Adv Life Sci Technol 2020; 4(1):11—8. https://doi.org/10.18488/journal.72.2020.41.11.18.

[50] Alhashimi SAM. Prediction of monthly rainfall in Kirkuk using artificial neural network and time series models. J Eng Sustain Develop 2014;18(1):129—43. https://doi:10.31272/ jeasd.v18i1.855.

[51] Yu H, Wang X, Ren B, Zeng T, Lv M, Wang C. An efficient Bayesian inversion method for seepage parameters using a data-driven error model and an ensemble of surrogates considering the interactions between prediction performance indicators. J Hydrol 2022;604:127235. https://doi.org/ 10.1016/j.jhydrol.2021.127235.

[52] Kumar V, Kedam N, Kisi O, Alsulamy S, Khedher KM, Salem MA. A comparative study of machine learning models for daily and weekly rainfall forecasting. Water Resour Manag 2025;39(1):271—90. https://doi.org/10.1007/ s11269-024-03969-8.

[53] Somvanshi VK, Pandey OP, Agrawal PK, Kalanker NV, Prakash MR, Chand R. Modeling and prediction of rainfall using artificial neural network and ARIMA techniques. J Ind Geophys Union 2006;10(2):141—51. https://doi.org/10.1515/ jigu-2006-0004.

[54] Latif SD, Mohammed DO, Jaafar A. Developing an innovative machine learning model for rainfall prediction in a semi-arid region. J Hydroinform 2024;26(4):904—14. https:// doi.org/10.2166/hydro.2024.014.

[55] Al-Ansari N, Abdellatif M, Ali S, Knutsson S. Long term effect of climate change on rainfall in northwest Iraq. Open Eng 2014;4(3):250—63. https://doi.org/10.2478/s13531-013- 0151-4.

[56] Mohammed BAR. Application of ANN technique for rainfall forecasting over Iraq. Int J Energy Environ 2012;3(6): 961—6. https://doi.org/10.4236/ije.2012.36102.

[57] Kassem Y, Go€kçekus¸ H, Çamur H, Esenel E. Application of artificial neural network, multiple linear regression, and response surface regression models in the estimation of monthly rainfall in Northern Cyprus. Desalination Water Treat 2021;215:328—46. https://doi.org/10.5004/dwt.2021.26525.

[58] Kumar A, Deo MM, Jeet P, Kumari A, Prakash OM. Daily rainfall prediction for Bihar using artificial neural networks: Prediction of rainfall using ANN. J Agri Search 2022;9(4): 320—5. https://doi.org/10.21921/jas.v9i04. 11596.

[59] Sayed BT, Al-Mohair HK, Alkhayyat A, RamírezCoronel AA, Elsahabi M. Comparing machine-learningbased black box techniques and white box models to predict rainfall-runoff in a northern area of Iraq, the Little Khabur River. Water Sci Technol 2023;87(3):812—22. https://doi.org/ 10.2166

Share

COinS