•  
  •  
 

Document Type

Review

Abstract

Electrodeposition is a pivotal technique in materials science, enabling the fabrication of metal and alloy coatings with tailored properties for diverse industrial applications. Traditional aqueous electrolytes, while widely used, present limitations such as narrow electrochemical windows, hydrogen evolution, and environmental concerns. Deep eutectic solvents (DESs) have emerged as promising alternatives, offering broader electrochemical windows, reduced toxicity, and enhanced solubility for metal salts. This review comprehensively examines the principles and advancements in electrodeposition from both aqueous and DES media, focusing on the deposition of Ni-Co and Sn-based alloys, the role of additives, the electrodeposition of metal powders, and surface analysis techniques. The discussion highlights the advantages of DESs over conventional solvents, the influence of complexing agents and additives on deposit characteristics, and the methodologies employed for surface characterization. Future perspectives emphasize the need for further research into optimizing DES formulations, understanding additive interactions, and developing scalable processes for industrial applications

Receive Date

18/09/2025

Revise Date

02/11/2025

Accept Date

19/11/2025

Publication Date

12-26-2025

References

[1] Huang Y, Lou Helen H. https://doi.org/10.1081/E-ECHP120007747; 2006.

[2] Fayomi O, Akanade I, Sode A. A review on the efficacy of electroplating in deteriorating environments. In: Journal of Physics: Conference Series. IOP Publishing; 2019. https:// doi.org/10.1088/1742-6596/1378/4/042084.

[3] Martin P. Introduction to surface engineering and functionally engineered materials. John Wiley & Sons; 2011. https://doi.org/10.1002/9781118171899.

[4] Cipto C, Sariman F, Prayitno A, Rusdi M. Analysis of anticorrosion electroplating coating on metal as raw material for car tanks. Math Modell Eng Prob 2025;12(5). https://doi.org/ 10.18280/mmep.120513.

[5] Protsenko V. Using deep eutectic solvent-assisted plating baths to electrodeposit composite coatings: a review. Coatings 2024;14(4):375. https://doi.org/10.3390/coatings14040 375.

[6] Abbott AP, Ryder KS, Konig € U. Electrofinishing of metals using eutectic based ionic liquids. Trans IMF 2008;86(4): 196—204. https://doi.org/10.1179/174591908X327590.

[7] Abbott AP, Frisch G, Hartley J, Ryder KS. Processing of metals and metal oxides using ionic liquids. Green Chem 20 11;13(3):471—81. https://doi.org/10.1039/C0GC00716A.

[8] Hu Y, Wang C. Electrodeposition of nickel—cobalt alloys from metal chloride-l-serine deep eutectic solvent for the hydrogen evolution reaction. J Mater Chem A 2024;12(27): 16769—79. https://doi.org/10.1039/D4TA02433H.

[9] Ordaz-Romero E, Roncagliolo-Barrera P, Ballinas-Indili R, Gonzalez-Antonio O, Farfan N. Ni-Co electrodeposition improvement using phenylsalicylimine derivatives as additives in ethaline-based deep Eutectic Solvents (DES). Coatings 2025;15(7):814. https://doi.org/10.3390/coatings15070814.

[10] Wu T, Kim J, Choa Y-H, Myung NV. Electrodeposition of nanocrystalline FeXCo1-X thin films from Choline Chloride-Urea deep eutectic solvents. Front Chem 2025;13:16350 84. https://doi.org/10.3389/fchem.2025.1635084.

[11] Cui T, Cao M, Li H, Zhang Y, Jiang K. Influence of electrodeposition parameters on the fabrication of Ni—Co/SiC+ TiN composite films through pulse current electrodeposition. Sci Rep 2024;14(1):13111. https://doi.org/10.1038/ s41598-024-64083-8.

[12] Jiang Y, Chen C-Y, Chang T-FM, Luo X, Yamane D, Sone M. Electrodeposition of Ni-Co alloys and their mechanical properties by micro-vickers hardness test. Electrochem 20 20;2(1):1—9. https://doi.org/10.3390/electrochem2010001.

[13] State SP, Costovici S, Mousavi M, Garcia YG, Zanella C, Cojocaru A, et al. Electrodeposited Sn-Cu-Ni alloys as leadfree solders on copper substrate using deep eutectic solvents: the influence of electrodeposition mode on the morphology, composition and corrosion behaviour. Surf Coating Technol 2024;477:130324.

[14] Benidir S, Madani A, Baka O, Kherfi A, Delhalle J, Mekhalif Z. Influence of applied potential on tin content in electrodeposition of Zn—Sn alloy coatings and its effect on corrosion protection. Inorgan Nano-Metal Chem 2022;52(7): 899—909. https://doi.org/10.1080/24701556.2021.2025105.

[15] Simka W, Puszczyk D, Nawrat G. Electrodeposition of metals from non-aqueous solutions. Electrochim Acta 2009;54(23): 5307—19. https://doi.org/10.1016/j.electacta.2009.04.028.

[16] Bai A, Hu C-C. Composition controlling of Co—Ni and Fe—Co alloys using pulse-reverse electroplating through means of experimental strategies. Electrochim Acta 2005;50 (6):1335—45. https://doi.org/10.1016/j.electacta.2004.07.055.

[17] Hansal WE, Tury B, Halmdienst M, Varsanyi ML, Kautek W. Pulse reverse plating of Ni—Co alloys: deposition kinetics of watts, sulfamate and chloride electrolytes. Electrochim Acta 2006;52(3):1145—51. https://doi.org/10.1016/j.electacta.2006.0 7.012.

[18] Schlesinger M, Paunovic M. Modern electroplating. John Wiley & Sons; 2011. https://doi.org/10.1002/9780470602638.

[19] Welton T. Ionic liquids: a brief history. Biophys Rev 2018;10 (3):691—706. https://doi.org/10.1007/s12551-018-0419-2.

[20] Parvulescu ^ VI, Hardacre C. Catalysis in ionic liquids. Chem Rev 2007;107(6):2615—65. https://doi.org/10.1021/cr050948h.

[21] Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev 2014;114(21):11060 —82. https://doi.org/10.1021/cr300162p.

[22] Stefanovic R, Ludwig M, Webber GB, Atkin R, Page AJ. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys Chem Chem Phys 2017;19(4): 3297—306. https://doi.org/10.1039/C6CP07932F.

[23] Zein El Abedin S, Endres F. Ionic liquids: the link to hightemperature molten salts? Accounts Chem Res 2007;40(11): 1106—13. https://doi.org/10.1021/ar700049w.

[24] Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T. Mixtures of ionic liquids. Chem Soc Rev 2012; 41(23):7780—802. https://doi.org/10.1039/C2CS35177C.

[25] Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 2020;121(3):1232—85. https://doi. org/10.1021/acs.chemrev.0c00385.

[26] You Y, Gu C, Wang X, Tu J. Electrodeposition of Ni—Co alloys from a deep eutectic solvent. Surf Coating Technol 20 12;206(17):3632—8. https://doi.org/10.1016/j.surfcoat.2012.0 3.001.

[27] Vijayakumar J, Mohan S, Kumar SA, Suseendiran S, Pavithra S. Electrodeposition of Ni—Co—Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int J Hydrogen Energy 2013;38(25):10208—14. https://doi.org/10.1016/j.ijhydene.2013.06.068.

[28] Li W, Hao J, Mu S, Liu W. Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chlorideethylene glycol deep eutectic solvent. Appl Surf Sci 2020;50 7:144889. https://doi.org/10.1016/j.apsusc.2019.144889.

[29] Mbugua NS, Kang M, Li H, Liu Y, Joseph N, Zhang Y. The influence of Co concentration on the properties of conventionally electrodeposited Ni—Co—Al2O3—SiC nanocomposite coatings. Protect Met Phys Chem Surface 2020; 56(1):94—102. https://doi.org/10.1134/S2070205120010165.

[30] Popov KI, Djokic SS, Grgur BN. Fundamental aspects of electrometallurgy. Springer; 2002. https://doi.org/10.1007/0- 306-47564-2_3.

[31] Shi L, Sun C, Gao P, Zhou F, Liu W. Mechanical properties and wear and corrosion resistance of electrodeposited Ni—Co/SiC nanocomposite coating. Appl Surf Sci 2006; 252(10):3591—9. https://doi.org/10.1016/j.apsusc.2005.05.035.

[32] Prabu S, Wang HW. Factors affecting the electrodeposition of aluminum metal in an aluminum chloride—urea electrolyte solution. J Chin Chem Soc 2017;64(12):1467—77. https://doi.org/10.1002/jccs.201700191.

[33] Yang Y, Cheng Y. Electrolytic deposition of Ni—Co—SiC nano-coating for erosion-enhanced corrosion of carbon steel pipes in oilsand slurry. Surf Coating Technol 2011;205(10 ):3198—204. https://doi.org/10.1016/j.surfcoat.2010.11.035.

[34] Tian L, Xu J, Xiao S. The influence of pH and bath composition on the properties of Ni—Co coatings synthesized by electrodeposition. Vacuum 2011;86(1):27—33. https://doi.org/ 10.1016/j.vacuum.2011.03.027.

[35] Gomez E, Pane S, Valles E. Electrodeposition of Co—Ni and Co—Ni—Cu systems in sulphate—citrate medium. Electrochim Acta 2005;51(1):146—53. https://doi.org/10.1016/j.electacta.2005.04.010.

[36] Ma C, Wang S, Low C, Wang L, Walsh F. Effects of additives on microstructure and properties of electrodeposited nanocrystalline Ni—Co alloy coatings of high cobalt content. Trans IMF 2014;92(4):189—95. https://doi.org/10.1179/0020 296713Z.000000000115.

[37] Burzynska L, Rudnik E. The influence of electrolysis parameters on the composition and morphology of Co—Ni alloys. Hydrometallurgy 2000;54(2—3):133—49. https://doi. org/10.1016/S0304-386X(99)00060-2.

[38] Chung C-K, Chang W. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni—Co films. Thin Solid Films 2009;517(17):4800—4. https://doi.org/10.1016/j.tsf.2009.03.087.

[39] Vazquez-Arenas J, Altamirano-Garcia L, Treeratanaphitak T, Pritzker M, Luna-Sanchez R, CabreraSierra R. Co—Ni alloy electrodeposition under different conditions of pH, current and composition. Electrochim Acta 2012;65:234—43. https://doi.org/10.1016/j.electacta.20 12.01.050.

[40] Mohanty U, Tripathy B, Singh P, Keshavarz A, Iglauer S. Roles of organic and inorganic additives on the surface quality, morphology, and polarization behavior during nickel electrodeposition from various baths: a review. J Appl Electrochem 2019;49(9):847—70. https://doi.org/10.1007/s10 800-019-01335-w.

[41] Lupi C, Dell'Era A, Pasquali M. Effectiveness of sodium citrate on electrodeposition process of NiCoW alloys for hydrogen evolution reaction. Int J Hydrogen Energy 2017;42(48):28766—76. https://doi.org/10.1016/j.ijhydene.2017.09. 139.

[42] Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS. Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Phys Chem Chem Phys 2017; 19(4):3219—31. https://doi.org/10.1039/C6CP08720E.

[43] Martyak NM, Seefeldt R. Additive-effects during plating in acid tin methanesulfonate electrolytes. Electrochim Acta 200 4;49(25):4303—11. https://doi.org/10.1016/j.electacta.2004.03.0 39.

[44] Pereira NM, Pereira CM, Silva AF. The effect of complex agents on the electrodeposition of tin from deep eutectic solvents. ECS Electrochem Letters 2012;1(2):D5. https://doi. org/10.1149/2.003202eel.

[45] Pereira NM, Brincoveanu O, Pantazi AG, Pereira CM, Araujo JP, Silva AF, et al. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloridebased ionic liquids. Surf Coating Technol 2017;324:451—62. https://doi.org/10.1016/j.surfcoat.2017.06.002.

[46] Phi T-L, Nguyen ST, Van Hieu N, Palomar-Pardave M, Morales-Gil P, Le Manh T. Insights into electronucleation and electrodeposition of nickel from a non-aqueous solvent based on NiCl2· 6H2O dissolved in ethylene glycol. Inorg Chem 2022;61(12):5099—111. https://doi.org/10.1021/acs. inorgchem.2c00127.

[47] Juma JA. The effect of organic additives in electrodeposition of Co from deep eutectic solvents. Arab J Chem 2021;14(4):10 3036. https://doi.org/10.1016/j.arabjc.2021.103036.

[48] Alesary HF, Cihangir S, Ballantyne AD, Harris RC, Weston DP, Abbott AP, et al. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim Acta 2019;304:118—30. https://doi.org/10.1016/j. electacta.2019.02.090.

[49] Alesary HF, Ismail HK, Shiltagh NM, Alattar RA, Ahmed LM, Watkins MJ, et al. Effects of additives on the electrodeposition of ZnSn alloys from choline chloride/ ethylene glycol-based deep eutectic solvent. J Electroanal Chem 2020;874:114517. https://doi.org/10.1016/j.jelechem.20 20.114517.

[50] Manhabosco T, Müller I. Influence of saccharin on morphology and properties of cobalt thin films electrodeposited over n-Si (100). Surf Coating Technol 2008;20 2(15):3585—90. https://doi.org/10.1016/j.surfcoat.2007.12.042.

[51] Portela AL, Lacconi GI, Teijelo ML. Nicotinic acid as brightener agent in copper electrodeposition. J Electroanal Chem 2001;495(2):169—72. https://doi.org/10.1016/S0022-0 728(00)00412-5.

[52] Qadir GQ, Awad MI, Juma JA, Karim WO, Al-thagafi ZT, Al Jahdaly BA, et al. Influence of nicotinic acid additive on the electrodeposition of nickel from aqueous solution. Int J Electrochem Sci 2024;19(9):100745. https://doi.org/10.1016/j. ijoes.2024.100745.

[53] Santos J, Matos R, Trivinho-Strixino F, Pereira E. Effect of temperature on Co electrodeposition in the presence of boric acid. Electrochim Acta 2007;53(2):644—9. https://doi. org/10.1016/j.electacta.2007.07.025.

[54] Aranzales D, Briliani I, McCrum I, Wijenberg J, de Vooys A, Koper M. The effect of naphthalene-based additives on tin electrodeposition on a gold electrode. Electrochim Acta 20 21;368:137606. https://doi.org/10.1016/j.electacta.2020.137606.

[55] Lupi C, Dell’Era A, Pasquali M, Imperatori P. Composition, morphology, structural aspects and electrochemical properties of Ni—Co alloy coatings. Surf Coating Technol 2011;20 5(23—24):5394—9. https://doi.org/10.1016/j.surfcoat.2011.0 6.002.

[56] Eliaz N, Venkatakrishna K, Hegde AC. Electroplating and characterization of Zn—Ni, Zn—Co and Zn—Ni—Co alloys. Surf Coating Technol 2010;205(7):1969—78. https://doi.org/ 10.1016/j.surfcoat.2010.08.077.

[57] Vagramyan A, Fatueva T. On the theory of simultaneous discharge of metal ions in real conjugated systems. J Electrochem Soc 1963;110(10):1030. https://doi.org/10.1149/1. 2425578.

[58] Dahms H, Croll I. The anomalous codeposition of ironnickel alloys. J Electrochem Soc 1965;112(8):771. https://doi. org/10.1149/1.2423692.

[59] Dolati A, Sababi M, Nouri E, Ghorbani M. A study on the kinetic of the electrodeposited Co—Ni alloy thin films in sulfate solution. Mater Chem Phys 2007;102(2—3):118—24. https://doi.org/10.1016/j.matchemphys.2006.07.009.

[60] Kwasniewski D, Grden M. Electrochemical behaviour of tin in alkaline electrolyte. Electrochem Commun 2015;61:125—8. https://doi.org/10.1016/j.elecom.2015.10.019.

[61] Lei J, Yang Jg. Electrochemical mechanism of tin membrane electro-deposition in chloride solutions. J Chem Technol Biotechnol 2017;92(4):861—7. https://doi.org/10.1002/jctb.5070.

[62] Wen S, Szpunar JA. Nucleation and growth of tin on low carbon steel. Electrochim Acta 2005;50(12):2393—9. https:// doi.org/10.1016/j.electacta.2004.10.053.

[63] Tzeng G, Lin S, Wang Y, Wan C. Effects of additives on the electrodeposition of tin from an acidic Sn (II) bath. J Appl Electrochem 1996;26(4):419—23. https://doi.org/10.1007/BF00 251327.

[64] Zavarine IS, Khaselev O, Zhang Y. Spectroelectrochemical study of the effect of organic additives on the electrodeposition of tin. J Electrochem Soc 2003;150(4):C202. https://doi. org/10.1149/1.1554724.

[65] Nakamura Y, Kaneko N, Nezu H. Surface morphology and crystal orientation of electrodeposited tin from acid stannous sulphate solutions containing various additives. J Appl Electrochem 1994;24(6):569—74. https://doi.org/10.1007/BF00 249860.

[66] Walsh FC, Low CTJ. A review of developments in the electrodeposition of tin. Surf Coating Technol 2016;288: 79—94. https://doi.org/10.1016/j.surfcoat.2015.12.081.

[67] Gao Y, Hu W, Gao X, Duan B. Electrodeposition of SnBi coatings based on deep eutectic solvent. Surf Eng 2014;30(1): 59—63. https://doi.org/10.1179/1743294413Y.0000000198.

[68] Anicai L, Petica A, Costovici S, Moise C, Brincoveanu O, Visan T. Electrodeposition of Sn—In alloys involving deep eutectic solvents. Coatings 2019;9(12):800.

[69] Shi T, Zou X, Wang S, Pang Z, Tang W, Li G, et al. Electrodeposition of Sn-Co-Ni and Sn-Co-Zn alloy coatings on copper substrate in a deep eutectic solvent and their characterization. Int J Electrochem Sci 2020;15(8):7493—507. https://doi.org/10.20964/2020.08.27.

[70] Qian H, Fu X, Chi Y, Zhang R, Zhan C, Sun H, et al. Study on electrodeposition and corrosion resistance of Cu-Sn alloy prepared in ChCl-EG deep eutectic solvent. J Solid State Electrochem 2022;26(2):469—79. https://doi.org/10.1007/ s10008-021-05086-7.

[71] Fashu S, Gu C, Zhang J, Bai W, Wang X, Tu J. Electrodeposition and characterization of Zn—Sn alloy coatings from a deep eutectic solvent based on choline chloride for corrosion protection. Surf Interface Anal 2015;47(3):403—12. https://doi.org/10.1002/sia.5728.

[72] Bengoa LN, Pary P, Conconi MS, Egli WA. Electrodeposition of Cu-Sn alloys from a methanesulfonic acid electrolyte containing benzyl alcohol. Electrochim Acta 2017;256:211—9. https://doi.org/10.1016/j.electacta.2017.10.027.

[73] Fukuda M, Imayoshi K, Matsumoto Y. Effect of adsorption of polyoxyethylene laurylether on electrodeposition of Pbfree Sn alloys. Surf Coating Technol 2003;169:128—31. https://doi.org/10.1016/S0257-8972(03)00191-9.

[74] Ru J, Hua Y, Xu C, Li J, Li Y, Wang D, et al. Morphologycontrolled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent. Appl Surf Sci 2015;335:153—9. https://doi. org/10.1016/j.apsusc.2015.02.045.

[75] Jovic V, Jovic B, Pavlovic M. Electrodeposition of Ni, Co and Ni—Co alloy powders. Electrochim Acta 2006;51(25): 5468—77. https://doi.org/10.1016/j.electacta.2006.02.022.

[76] Ul-Hamid A. A beginners' guide to scanning electron microscopy, 1. Springer; 2018. https://doi.org/10.1007/978-3- 319-98482-7.

[77] Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A practical beginner's guide to cyclic voltammetry. J Chem Educ 2018;95(2):197—206. https://doi.org/10.1021/acs.jchemed.7b00361.

[78] Bard AJ, Faulkner LR, White HS. Electrochemical methods: fundamentals and applications. John Wiley & Sons; 2022. https://doi.org/10.1007/s11243-023-00555-6.

[79] Eliaz N, Gileadi E. Physical electrochemistry: fundamentals, techniques, and applications. John Wiley & Sons; 2019. https://doi.org/10.1002/anie.201104618.

[80] Yamada H, Yoshii K, Asahi M, Chiku M, Kitazumi Y. Cyclic voltammetry part 1: fundamentals. Electrochemistry 2022;90 (10):102005-102005. https://doi.org/10.5796/electrochemistry. 22-66082.

[81] Juma JA, Karim WO, Aziz SB. UV-VIS, surface morphology and electrochemical study of cobalt electrodeposition from choline chloride-ethylene glycol liquid mixture. Int J Electrochem Sci 2021;16(10):21104. https://doi.org/10.20964/2021. 10.36.

[82] Gamburg YD, Zangari G. Theory and practice of metal electrodeposition. Springer Science & Business Media; 2011. https://doi.org/10.1007/978-1-4419-9669-5.

[83] Affat S. A review of deep eutectic solvents (DESs), preparation, classification, physicochemical properties, advantages and disadvantages. Univ Thi-Qar J Sci 2024;11(1): 167—75. https://doi.org/10.32792/utq/utjsci/v11i1.1208.

[84] Chiorcea-Paquim A-M, Brett CM. Electrodeposition in deep eutectic solvents: perspectives towards advanced corrosion protection. Appl Mater Today 2025;44:102746. https://doi. org/10.1016/j.apmt.2025.102746.

[85] Zamani M, Amadeh A, Baghal SL. Effect of Co content on electrodeposition mechanism and mechanical properties of electrodeposited Ni—Co alloy. Trans Nonferrous Metals Soc China 2016;26(2):484—91. https://doi.org/10.1016/S1003- 6326(16)64136-5.

[86] Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS, Forrest G. A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim Acta 2015;176:718—26. https://doi.org/10.1016/j. electacta.2015.07.051.

[87] Li W, Hao J, Liu W, Mu S. Electrodeposition of nano Ni—Co alloy with (220) preferred orientation from choline chlorideurea: electrochemical behavior and nucleation mechanism. J Alloys Compd 2021;853:157158. https://doi.org/10.1016/j. jallcom.2020.157158.

[88] Mladenovic IO, Nikolic ND. Hardness and morphology analysis of electrolytically produced copper coatings. In: Proceedings-XXIII YuCorr—Meeting point of the science and practice in the fields of corrosion, materials and environmental protection, divcibare, Serbia, May 2022. Beograd: Serbian Society of Corrosion and Materials Protection UISKOZAM; 2022. https://enauka.gov.rs/handle/123456789/ 568365.

[89] Liu C, Su F, Liang J. Nanocrystalline Co-Ni alloy coating produced with supercritical carbon dioxide assisted electrodeposition with excellent wear and corrosion resistance. Surf Coating Technol 2016;292:37—43. https://doi.org/10.10 16/j.surfcoat.2016.03.027.

[90] Smith E, Fullarton C, Harris R, Saleem S, Abbott A, Ryder K. Metal finishing with ionic liquids: scale-up and pilot plants from IONMET consortium. Trans IMF 2010;88(6):285—93. https://doi.org/10.1179/174591910X12856686485734.

Share

COinS