•  
  •  
 

Corresponding Author

Ibrahim O. Hamad

Authors ORCID

0000-0002-3994-1866

Document Type

Original Article

Abstract

This paper proposes a fresh perspective for visualizing the Cantor set and explores its shading characteristics through the utilization of nonstandard tools and techniques. Our investigation reveals that the measure of the Cantor set is infinitely close to zero but not identically zero, and we validate the properties of the Cantor set using an assortment of nonstandard methodologies. These findings have far-reaching implications for enhancing our understanding of mathematical approximations and exact measurements. Furthermore, we correlate our nonstandard perspective outcomes regarding the Cantor set with some specific applied models.

Keywords

nonstandard, Cantor set; infinitely close; measure zero; uncountable set.

References

[1] Nelson E. Internal set theory: a new approach to nonstandard analysis. Bull Am Math Soc 1977;83(6):1165e98. URL: https://www.ams.org/journals/bull/1977-83-06/home.html. https://doi.org/10.1090/s0002-9904-1977-14398-x.

[2] Robinson A. Non-standard analysis. third ed. Princeton, New Jersey: Princeton University Press; 1996. https://doi.org/ 10.1515/9781400884223.

[3] Tiwari D, Giordano P. Hyperseries in the non-Archimedean ring of Colombeau generalized numbers. Monatsh Math 2022;197:193e223. https://doi.org/10.1007/s00605-021-01647-0.

4] Goldblatt R. Lectures on the hyperreals: an introduction to nonstandard analysis (Vol. 188). Springer Science & Business Media; 2012.

[5] Qadir C, Aziz W, Hamad I. Rank two integral aspects of three dimensional lotkaevolterra equations with nonstandard analysis. Differ Equat Dyn Sys 2023:1e27. https://doi.org/ 10.1007/s12591-023-00664-9.

[6] Hamad IO, Ismail TH. Generalized curvature and torsion in Nonstandard analysis: nonstandard technical treatment for some differential geometry concepts. Lap Lambert Academic Publishing; 2011.

[7] Keisler HJ. Foundations of infinitesimal calculus (Vol. 20). Boston: Prindle, Weber & Schmidt; 1976. https://people. math.wisc.edu/.

[8] Cutland NJ. Nonstandard real analysis. In: Nonstandard analysis: theory and applications. Dordrecht: Springer Netherlands; 1997. p. 51e76. https://doi.org/10.1007/978-94- 011-5544-1_2.

[9] Goldbring I. Lecture notes on nonstandard analysis ucla summer school in logic. URL: https://www.math.uci.edu/; 2014.

[10] Sergio S, Todovov T. Nonstandard analysis in point-set topology Lecture Notes. Vienna: Schrodinger Institute for Mathematical Physics; 1989.

[11] Cohn DL. Measure theory (vol. 5). New York: Birkhauser; € 2013.

[12] Bergman I. Baire category theorem. Mathematics. Master thesis. Karlstads Universiteit 651 88 Karlstad; 2009.

[13] Narayan S. In: Chand S, editor. Elements of real analysis. New Delhi, India: Company Ltd., Ram Nagar; 2009.

[14] Robert A. Nonstandard analysis. John Wiley & Sons Lid; 1988.

[15] Alvarez-Samaniego B, Alvarez-Samaniego W, Ortiz-Castro J. Some existence results on Cantor sets. J Egypt Math Soc 2017; 25(3):326e30. https://doi.org/10.1016/j.joems.2017.02.002.

[16] Pawłowicz M. Linear combinations of the classic cantor set. Tatra Mt Math Publ 2013;56(1):47e60. https://doi.org/ 10.2478/tmmp-2013-0026. URL: https://sciendo.com/pdf/10. 2478/tmmp-2013-0026.

[17] Almirantis Y, Provata A. Long-and short-range correlations in genome organization. J Stat Phys 1999;97(1):233e62. https://doi.org/10.1023/A:1004671119400.

[18] Bendixson I. Quelques theoremes: De la th eorie des en- sembles de points Extrait d'une lettre adressee a M. Cantor a Halle. Acta Math 1883;2:415e29. https://doi.org/10.1007/ BF02612172.

[19] Mandelbrot BB. The fractal geometry of nature (Vol. 1). New York: WH freeman; 1982. p. 25e74. https://doi.org/10.2307/ 2686529.

[20] Vicsek T. Fractal growth phenomena. second ed. Singapore: World Scientific; 1992. https://doi.org/10.1142/0511. 1992.

[21] Ziemkiewicz D, Karpinski K, Zieli nska-Raczy nska S. Fractal Plasmons on Cantor Set Thin Film. Entropy 2019;21(12):1176. https://doi.org/10.3390/e21121176.

[22] Michael FB. Fractals everywhere. Dover Publications, Inc.; 2012.

[23] Khan SI, Islam S. An exploration of the generalized cantor set 2013;2(7):50e4.

[24] Devaney RL. A first course in chaotic dynamical systems. New York: Addition Wesley Publishing Company INC; 1992. https://doi.org/10.1201/9780429503481.

[25] Hutchinson JE. Fractals and self-similarity. Indiana Univ Math J 1981;30(5):713e47. https://doi.org/10.1512/iumj.1981. 30.30055.

[26] Schoenfeld AH, Gruenhage G. An alternative characterization of the cantor set. Proc Am Math Soc 1975;53(1):235e6. https://doi.org/10.1090/s0002-9939-1975-0377836-4.

[27] Mendes P. Sum of Cantor sets: self-similarity and measure. Proc Am Math Soc 1999;127(11):3305e8. [28] Horiguchi T, Morita T. Devil's staircase in a one-dimensional mapping. Phys Stat Mech Appl 1984;126(3):328e48. https:// doi.org/10.1016/0378-4371(84)90205-x.

[29] Thomsett MC. Musical terms, symbols and theory: an illustrated dictionary. McFarland; 2016.

[30] Brothers HJ. Structural scaling in Bach's Cello Suite no. 3. Fractals 2019;15(1):89e95. https://doi.org/10.1142/S0218348 X0700337X.

[31] Catania S. Role of DNA sequence in CENP-ACnp1 assembly at fission yeast centromeres. Ph.D. thesis. The University of Edinburgh; 2013. https://api.semanticscholar.org/CorpusID: 82885490.

[32] Takayasu H. Fractals in the physical sciences. Manchester University Press; 1990.

[33] Provata A, Almirantis Y. Fractal Cantor patterns in the sequence structure of DNA. Fractals 2000;8(1):15e27. https:// doi.org/10.1142/s0218348x00000044.

[34] Stephen TK, Jocelyn EK, Elliott SG. Lewin's genes XII. LLC: Jones and Bartlett Learning; 2018.

[35] Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC. Overview of nanoelectronic devices. Proc IEEE 1997;85(4):521e40. https://doi.org/10.1109/5.573739.

Share

COinS