•  
  •  
 

Corresponding Author

Henry O. Edet

Document Type

Original Article

Abstract

The prevalent health hazards as well as environmental threats posed by industrial affiliate gases have become a point of concern to scientists today, this study explores the use of fullerene-like Al12N12 nanostructured for the adsorption of PH3 NH3 and COCl2. Density Functional Theory (DFT) at the M06-2X/6-311+G (d, p) level of theory was utilized, in the detection of the adsorption properties of Al12N12 for PH3, NH3, and COCl2 gases. The findings indicate that Al12N12exhibits high stability and suitability in gas adsorption applications. As confirmed by the frontier molecular orbitals (FMO) analysis which demonstrates the energy gap ranging from 5.4591 eV to 6.1360 eV accrediting to its higher electrical conductivity and stability of the modified nanomaterial in gas adsorption. The adsorption energy on the studied nanomaterial shows to chemosorption with negative adsorption energy values following a trend according to their increased adsorption potential -0.4427 eV < -0.7978 eV < -0.8247 eV < -0.8253 eV < -1.6666 eV, corresponding to AlN_COCl2 Al@Cl < AlN_COCl2 Al@O < AlN_PH3 (Al@P) < AlN_PH3 N@P < AlN_NH3(Al@N) pinpointing AlN_NH3(Al@N) as the most effective material in gas sensing specifically NH3. AIM analysis also confirmed non-covalent interaction with a density of electron values ranging from 0.0104 to 0.0567. Al12N12 can therefore be utilized for gas detection and adsorption. The adsorption energy, energy gap, and the quantum theory of atom-in-molecules (QTAIM) results for all the studied complexes consistently indicate that the adsorption of PH3, NH3, and COCl2 on Al12N12 nanomaterial is promising. The M06-2X, B97XD, and PBE0 functionals were used for adsorption computational comparison along with the 6-311++G (d, p) basis set. Our results indicate that adsorption energies for PBE0 functional are more negative than those of the M06-2X and ώB97XD functionals which reveals that PBE0 functional shows better performance in evaluation of such weak interactions. Thermodynamically the adsorption sites for PH3, NH3, and COCl2 are reported to be stable and exothermic. Hence, Al12N12 can detect and adsorb studied gases.

Keywords

Adsorptions; Detection; DFT; Sensing; Nanomaterial

References

[1] Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Hum Exp Toxicol 2015;34(12):1318e21. https:// doi.org/10.1177/0960327115603588.

[2] Zhou S, Chen M, Lu Q, Hu J, Wang H, Li K, et al. Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Mater Lett 2019;247:15e8. https://doi.org/10.1016/ j.matlet.2019.03.085.

[3] Timpel M, Ligorio G, Ghiami A, Gavioli L, Cavaliere E, Chiappini A, et al. 2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. npj 2D Materials and Applications 2021;5(1):1e10. https:// doi.org/10.1038/s41699-021-00244-x.

[4] Kahrilas GA, Blotevogel J, Stewart PS, Borch T. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 2015;49(1):16e32. https://doi.org/10.1021/es503724k.

[5] Nagarajan V, Chandiramouli R. Detection of trace level of hazardous phosgene gas on antimonene nanotube based on f irst-principles method. J Mol Graph Model 2019;88:32e40. https://doi.org/10.1016/j.jmgm.2018.12.005.

[6] Borak J, Diller WF. Phosgene exposure: mechanisms of injury and treatment strategies. J Occup Environ Med 2001: 110e9. https://journals.lww.com/joem/toc/2001/02000.

[7] Sovacool BK, Griffiths S, Kim J, Bazilian M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 2021;141:110759. https://doi.org/10.1016/ j.rser.2021.110759.

[8] Greaves JS, Richards AM, Bains W, Rimmer PB, Sagawa H, Clements DL, et al. Phosphine gas in the cloud decks of Venus. Nat Astron 2021;5(7):655e64 (Published as an issue).

[9] Kwak D, Lei Y, Maric R. Ammonia gas sensors: A comprehensive review. Talanta 2019;204:713e30. https://doi.org/ 10.1016/j.talanta.2019.06.034.

[10] Bendahan M, Lauque P, Seguin JL, Aguir K, Knauth P. Development of an ammonia gas sensor. Sensor Actuator B Chem 2003;95(1e3):170e6. https://doi.org/10.1016/S09254005(03)00408-8.

[11] Odling W. A course of practical chemistry arranged for the use of medical students. Green: Longmans; 1876 (Textbook).

[12] Sousa-Silva C, Seager S, Ranjan S, Petkowski JJ, Zhan Z, Hu R, et al. Phosphine as a biosignature gas in exoplanet atmospheres. Astrobiology 2020;20(2):235e68. https:// doi.org/10.1089/ast.2018.1954.

[13] Baei MT, Soltani A, Hashemian S, Mohammadian H. Al12N12 nanocage as a potential sensor for phosgene detection. Can J Chem 2014;92(7):605e10. https://doi.org/ 10.1139/cjc-2014-0056.

[14] Rezaei Sameti M, Zanganeh H. TD-DFT, NBO, AIM, RDG and Thermodynamic Studies of Interactions of 5-Fluorouracil Drug with Pristine and P-doped Al12N12 Nanocage. Physical Chemistry Research 2020;8(3):511e27. https:// doi.org/10.22036/pcr.2020.213588.1714.

[15] Beheshtian J, Baei MT, Peyghan AA. Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf Sci 2012;606(11e12):981e5. https://doi.org/10.1016/ j.susc.2012.02.019.

[16] Rad AS, Ayub K. A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J Alloys Compd 2016;672: 161e9. https://doi.org/10.1016/j.jallcom.2016.02.139.

[17] Fallahi P, Jouypazadeh H, Farrokhpour H. Theoretical studies on the potentials of some nanocages (Al12N12, Al12P12, B12N12, Be12O12, C12Si12, Mg12O12 and C24) on the detection and adsorption of Tabun molecule: DFT and TD-DFT study. J Mol Liq 2018;260:138e48. https://doi.org/ 10.1016/j.molliq.2018.03.085.

[18] Mahani NM,Yosefelahi R. Interaction of B12N1 and Al12N12 nano-cages with amino acids: a density functional theory study. Moroc J Chem 2018;6(1). https://doi.org/10.48317/ IMIST.PRSM/morjchem-v6i1.8619. 6-1.

[19] Baei MT, Soltani A, Torabi P, Hashemian S. Al12N12 nanocage as potential adsorbent for removal of acetone from environmental systems. Monatshefte für Chemie-Chemical Monthly 2015;146(6):891e6. https://doi.org/10.1007/s00706014-1365-8.

[20]HeYB,JiaJF,WuHS.TheinteractionofhydrazinewithanRh (1 1 1) surface as a model for adsorption to rhodium nanoparticles: a dispersion-corrected DFT study. Appl Surf Sci 2015;327:462e9. https://doi.org/10.1016/j.apsusc.2014.12.007.

[21] Saadh MJ, Hammad AK, Othman Kattab N, Khudhur Mohammed S, Ahmad H, Eldesoky GE, et al. Theoretical investigation of formaldehyde recognition by aluminum nitride nanoclusters (Al12N12): a DFT approach. Mol Phys 2024:e2329211. https://doi.org/10.1080/00268976.2024. 2329211.

[22] Selahvarzi F, Karimian H, Shamlouei HR. Theoretical study of adsorption of sodium, lithium, magnesium and calcium chloride and sulfate salts by pure and Sc-doped B12N12 nanocages and pure boron nitride nanosheet. Diam Relat Mater 2024;145:111155. https://doi.org/10.1016/j.diamond. 2024.111155.

[23] Frisch A. Gaussian 09W Reference. Wallingford, USA, 25p. 2009. p. 470 (Ref. Book).

[24] Khan S, Sajid H, Ayub K, Mahmood T. Adsorption behaviour of chronic blistering agents on graphdiyne; excellent correlation among SAPT, reduced density gradient (RDG) and QTAIM analyses. J Mol Liq 2020;316:113860. https:// doi.org/10.1016/j.molliq.2020.113860.

[25] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996;14(1):33e8. https://doi.org/ 10.1016/0263-7855(96)00018-5.

[26] Udoikono AD, Louis H, Eno EA, Agwamba EC, Unimuke TO, Igbalagh AT, et al. Reactive azo compounds as a potential chemotherapy drugs in the treatment of malignant glioblastoma (GBM): Experimental and theoretical studies. J Photochem Photobiol, A 2022;10:100116. https:// doi.org/10.1016/j.jpap.2022.100116.

[27] Osigbemhe IG, Louis H, Khan EM, Etim EE, Odey DO, Oviawe AP, et al. Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. J Iran Chem Soc 2022:1e16. https://doi.org/10.1007/s13738-022-02550-7.

[28] Buasaeng P, Rakrai W, Wanno B, Tabtimsai C. DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-dopedsingle-walled carbon nanotubes. Appl Surf Sci 2017;400:506e14. https://doi.org/10.1016/j.apsusc.2016.12.215.

[29] Nemati-Kande E, Karimian R, Goodarzi V, Ghazizadeh E. Feasibility of pristine, Al-doped and Ga-doped Boron Nitride nanotubes for detecting SF4 gas: A DFT, NBO and QTAIM investigation. Appl Surf Sci 2020;510:145490. https://doi.org/ 10.1016/j.apsusc.2020.145490.

[30] Mohammadi MD, Louis H, Benjamin I, Oche D, Patel HM, Edet HO. Therapeutic Delivery Potential of Covalent Organic Framework (COF): Intuition from Theoretical Calculations. ChemistrySelect 2024;9(3):e202303529. https:// doi.org/10.1002/slct.202303529.

[31] Hussain S, Chatha SAS, Hussain AI, Hussain R, Yasir Mehboob M,ManshaA, et al. In silico designing of Mg12O12 nanoclusters with a late transition metal for NO2 adsorption: an efficient approach toward the development of NO2 sensing materials. ACS Omega 2021;6(22):14191e9. https:// doi.org/10.1021/acsomega.1c00850.

[32] Moladoust R. Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chemical Review and Letters 2019;2(4):151e6. https://doi.org/10.22034/crl.2020.216208.1031.

[33] Shahabi M, Raissi H. Investigation of the molecular structure, electronic properties, AIM, NBO, NMR and NQR parameters for the interaction of Sc, Ga and Mg-doped (6, 0) aluminumnitride nanotubes with COCl2 gas by DFT study. JInclusion Phenom Macrocycl Chem 2016;84(1):99e114. https://doi.org/10.1007/s10847-015-0587-7.

[34] Asogwa FC, Louis H, Asuquo V, Edet HO, Oche D, Adeyinka AS. Adsorption profiles of chlorinated industrial gases on metal (Cu, Mn and Ni) doped fullerenes using DFT, QTAIM and NCI analysis. Chem Paper 2024;78(2):1303e16. https://doi.org/10.1007/s11696-023-03167-7.

[35] Inah BE, Okon EE, Andrew BH, Eba MBA, Edet HO, Unimuke TO, et al. Detection of C6H6, CO2, and H2S gases on arsenic (As) and cobalt (Co) doped quantum dots (QDs) nanostructured materials. Z Phys Chem 2024. https:// doi.org/10.1515/zpch-2023-0451.

[36] Fabris S, Paxton AT, Finnis MW. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 2002;50(20):5171e8. https://doi.org/10.1016/S1359-6454(02) 00385-3.

[37] Cortes-Guzman F, Bader RF. Complementarity of QTAIM and MO theory in the study of bonding in donoreacceptor complexes. Coord Chem Rev 2005;249(5e6):633e62. https:// doi.org/10.1016/j.ccr.2004.08.022.

[38] Eno EA, Louis H, Unimuke TO, Gber TE, Mbonu IJ, Ndubisi CJ, et al. Reactivity, stability, and thermodynamics of para-methylpyridinium-based ionic liquids: Insight from DFT, NCI, and QTAIM. Journal of Ionic Liquids 2022;2(1): 100030. https://doi.org/10.1016/j.jil.2022.100030.

[39] Baryshnikov GV, Minaev BF, Minaeva VA, Baryshnikova AT, Pittelkow M. DFT and QTAIM study of the tetra-tert-butyltetraoxa [8] circulene regioisomers structure. J Mol Struct 2012;1026:127e32. https://doi.org/10.1016/j.molstruc.2012.05. 065.

[40] Tamafo FouegueAD,NonoJH,NkungliNK,GhogomuJN.A theoretical study of the structural and electronic properties of some titanocenes using DFT, TD-DFT, and QTAIM. Struct Chem 2021;32(1):353e66. https://doi.org/10.1007/s11224-02001630-9.

[41] Chinnasamy K, Poomani K. Intermolecular interactions and charge density distribution of endocrine-disrupting molecules (xenoestrogens) with ERa: QM/MM perspective. Struct Chem 2020;31(3):1013e28. https://doi.org/10.1007/s11224019-01452-4.

[42] Nkungli NK, Ghogomu JN. Theoretical analysis of the binding of iron (III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL studies. J Mol Model 2017;23(7): 1e20. https://doi.org/10.1007/s00894-017-3370-4.

[43] Grabowski SJ. QTAIM characteristics of halogen bond and related interactions. J Phys Chem 2012;116(7):1838e45. https://doi.org/10.1021/jp2109303.

[44] Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, et al. NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theor Comput 2011;7(3):625e32. https://doi.org/10.1021/ct100641a.

Share

COinS