•  
  •  
 

Document Type

Original Article

Abstract

Pseudomonas aeruginosa has become a major cause of life-threatening nosocomial infections that can rapidly develop resistance to multiple antimicrobial agents, mostly due to its ability to produce extended-spectrum β-lactamase (ESBL),AmpC and metallo-β-lactamase(MBL).Biofilm formation is another important factor contributes to the chronicity of infections as they reduce susceptibility to antimicrobial agents. This study was aimed to find prevalence of ESBL and AmpC β-lactamases production and biofilm formation in burn isolates of P. aeruginosa. Further we find out the potential to form biofilm in relation to antibiotic resistance and β-lactamase productions.A total of 90 isolates of P. aeruginosa were isolated from burn samples .We applied Vitek-2 automated system at Rozhawa hospital as a panel of antimicrobial agents. Microtiter plate assay was chosen to detect the biofilm formation. Combined disk diffusion method and AmpC disc test were followed for phenotypic detection of ESBL and AmpC production, respectively. Of the 90 P. aeruginosa burn isolates, 31.1% of isolates formed biofilms ,the majority of which (71.4%) were moderate biofilms. ESBL production 58 (64.4%) was found to be the predominant resistance mechanism followed by AmpC β-lactamase production 46(51.1%). Production of biofilm were higher in the ESBL,AmpC and ESBL+AmpC β-lactamases producers (34.4%,32.6%and37.9%) respectively,compared with the ESBL,AmpC and ESBL+AmpC β-lactamases non-producers (25%,31.8%and 27.8%) respectively.A significant association was found between the degree of biofilm formation and betalactamase production in P. aeruginosa.(P<0.05) The biofilm producing P.aeruginosa were significantly (P<0.01) more resistant compared to biofilm non producers. Biofilm production was strongly correlated to antibiotic resistance .

Publication Date

5-1-2018

References

Akhter S. (2015). Prevalence and Detection of AmpC β-Lactamases in Gram Negative Bacilli from BIHS Hospital, Mirpur, Dhaka.International Journal of Research Studies in Microbiology and Biotechnology,1( 2) ,1-6 .
AL-Marjani M. F. and Khadam Z. A.(2016).Beta-Lactamases in clinical isolates recovered Acinetobacterbaumannii from humans in Iraq , Advance Pharmaceutical Journal, 1(4), 81- 89.
Chika E.O., Nneka A.R., Dorothy O.N., Chika E.(2017).Multi-Drug Resistant Pseudomonas aeruginosa Isolated from Hospitals in Onitsha, South-Eastern Nigeria, International Archives of BioMedical and Clinical Research,3(3),22-26.
Clinical and Laboratory Standards Institute.( 2011). Performance standards for antimicrobial susceptibility testing. 12th Informational Supplement. CLSI Document M100-S12, Pennsylvania; USA. 22: 1.
de Almeida Silva K.F., Calomino M. A., Deutsch G., de Castilho S. R., etal.(2017).Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center, burns,(4 3),137–143.
Długaszewska J., Antczak M., Kaczmarek I., et al.(2016). In vitro biofi lm formation and antibiotic susceptibility of Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis, Journal of Medical Science,85(4).
Dou Y., Huan J., Guo F., Zhou Z. and Shi Y.(2017).Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014, Journal of International Medical Research,45(3),1124–1137.
El-Khashaab T., Erfan D. M , Kamal A., El-Moussely L. M. and Ismail D. K. (2016).Pseudomonas Aeruginosa Biofilm Formation and Quorum Sensing lasR Gene in Patients with Wound Infection,Egyptian Journal of Medical Microbiology, 25 (1),101-108.
Emami S. and Eftekhar F.(2015).The Correlation Between Biofilm Formation and Drug Resistance in Nosocomial Isolates of Acinetobacterbaumannii, Avicenna Journal of Clinical Microbiology and Infections,2(2),e23954.
Fazeli H., Sadighian H. and Esfahani B. N.(2012).Identification of Class-1 Integron and Various Β-Lactamase Classes among Clinical Isolates of Pseudomonas aeruginosa at Children's Medical Center Hospital, Mohammad Reza Pourmand Journal Medical Bacteriology,1(3, 4 ), 25-36.
Gallant C. V., Daniels C., Leung J. M., Ghosh A. S., Young K. D., Kotra L. P. and Burrows L.L.(2005).Commonβ-lactamases inhibit bacterial biofilm formation,Molecular Microbiology,58(4),1012–1024. wScience, LtdOxford,
Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov L Michael, Parsek M. R.(2001).Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function ,Journal of Bacteriology,183(18), 5395–5401.
Heydari S. and Eftekhar F.(2015).Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa, Jundishapur Journal Microbiology, 8(3), e15514.
Kalaivani R., Shashikala P., Sheela Devi C., Prashanth K. and Saranathan R .(2013). Phenotypic assays for detection of ESBL and MBL producers among the clinical isolates of multidrug resistant Pseudomonas aeruginosa from a tertiary care hospital, International Journal of Current Research and Review, 5(17), 28-35.
Kaur D. C. and Wankhede S.V.(2013). A study of Biofilm formation &Metallo-β-Lactamases in Pseudomonasaeruginosa in a tertiary care rural hospital, International Journal of Scientific and Research Publications, 3(10),2250-3153.
Khosravi A.D. and Mihani F.(2008). Detection of metallo-β-lactamase–producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran, Diagnostic microbiology and infectious disease,60(1),125-8.
Kumar V., Sen M. R., Nigam C. Gahlot R. and Kumari S.(2012).Burden of different betalactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study, Indian Journal of Critical Care Medicine,16( 3).
Lathamani K and Kotigadde S.(2016).Biofilm Formation and its Correlation with ESBL Production in KlebsiellapneumoniaeIsolated from a Tertiary Care Hospital,International Journal of Science and Research, 5 ( 2).
Madhumati B., Rani L., Ranjini C.Y. and Rajendran R.(2015).Prevalence of AMPC Beta Lactamases among Gram Negative Bacterial Isolates in a Tertiary Care Hospital , International Journal of Current Microbiology and Applied Sciences, 4(9),219-227.
ManchandaV.and Singh N.P.(2003). Occurrence and detection of AmpCbetalactamases among Gram negative clinical isolates using a modified three-dimensional test at Guru TeghBahadur Hospital, Delhi, Indian Journal of Antimicrobial Chemotherapy,51,415-8.
Moxon C. A.and Paulus S.(2016).Beta-lactamases in Enterobacteriaceae infections in children, Journal of Infection, 72, Suppl:S41-9.
Neopane P., Nepal H. P. , Gautam R., Paude R., Ansari Sh., Shrestha S., Thapa S. (2017).Is There Correltion of Biofilm Formtion With Multidrug Resistance and ESBL production in Pseudomonas aeruginosa? European Journal of Biomedical and Pharmaceutical Sciences,4(1), 366-372.
Norouzi F., Mansouri S., Moradi M. and Razavi M.(2010). Comparison of cell surface hydrophobicity and biofilm formation among ESBL-and non–ESBL-producing Pseudomonas aeruginosaclinical isolates, African Journal of Microbiology Research, 4 (11) ,1143-1147.
Parveen, M. R., Harish B.N.andParija S.C.(2010). AMPC Beta lactmases Among GramNegative Clinical Isolates From A Tertiary Hospital ,South India. Brazilian Journal of Microbiology ,41, 596-602.
Patwary R., Sultana M., Khaleque M., Haque Z. M and Parveen S.(2010).Resistance Genotyping Profile of Extended-Spectrum Beta-Lactamase(ESBLs)-, AmpC Beta-Lactamase (ESBL/AmpC) and Carbapenemase (ESBL/Carbapenemase)-Producing Escherichia coli Isolated from Clinical, Food and Environmental Lake Water in Bangladesh, Advances in Applied Science Research , 8(3),23-31.
Qureshi M. A. and Bhatnagar R. K.(2016). Phenotypic Characterization of ESBL, AmpC and MBL Producers among the Clinical Isolates of Multidrug Resistant Pseudomonas aeruginosa ,International Journal of Current Microbiology and Applied Sciences,5(10), 749-758.
Rafiee R., Eftekhar F.Tabatabaei S.A. and Tehrani D.M.(2014). Prevalence of Extended-Spectrum and Metallo β-Lactamase Production in AmpC β-Lactamase Producing Pseudomonas aeruginosaIsolates From Burns, Jundishapur Journal of Microbiology, 7(9), e16436.
Sahal G. and Bilkay I. S.(2015). Multidrug resistance by biofilm-forming clinical strains of Proteus mirabilis, Asian Biomedicine,9( 4 ), 535 – 554.
Shaikh S. , Fatima J. Shakil S., Rizvi S. M. D. and Kamal M. A.(2015).Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment, Saudi Journal of Biological Sciences,22(1),90-101.
Sreeshma P., Champa H., Sunil R.P.andSubbannayya K.(2013). Detection of extended spectrum βlactamase, AmpC β-lactamase and metallo β-lactamase in clinical isolates of Pseudomonas aeruginosa, Journal of Pharmaceutical and Biomedical Sciences,33(33),1506–1515.
Tavajjohi Z. andMoniri R.(2011). Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital , Iranian Journal of Clinical Infectious Diseases,6(1),18-23.
Vahdani M., Azimi L., Asghari B., Bazmi F., RastegarLari A.(2012).Phenotypic Screening of Extended-Spectrum ß-Lactamase and Metallo-ß-Lactamase in Multidrug-Resistant Pseudomonas aeruginosa From Infected Burns ,Annals of Burns and Fire Disasters , XXV ( 2 ).

Share

COinS